7 research outputs found

    Determinants of left ventricular diastolic function-The Cardiovascular Risk in Young Finns Study

    Get PDF
    Decreased left ventricular (LV) diastolic function is associated with increased all-cause mortality and risk for a heart failure. The determinants of LV diastolic function have been mainly studied in elderly populations; however, the origin of LV heart failure may relate to the lifestyle factors acquired during the life course. Therefore, we examined biochemical, physiological, and lifestyle determinants of LV diastolic function in 34-49-year-old participants of the Cardiovascular Risk in Young Finns Study (Young Finns Study). In 2011, clinical examination and echocardiography were performed for 1928 participants (880 men and 1048 women; aged 34-49 years). LV diastolic function was primarily defined using E/e-ratio (population mean 4.8, range 2.1-9.0). In a multivariate model, systolic blood pressure (P <0.005), female sex (P <0.005), age (P <0.005), waist circumference (P = 0.024), smoking (P = 0.028), serum alanine aminotransferase (P = 0.032) were directly associated with E/e-ratio, while an inverse association was found for height (P <0.005). Additionally, a higher E/e-ratio was found in participants with concentric hypertrophy compared to normal cardiac geometry (P <0.005). Other indicators of the LV diastolic function including E/A-ratio and left atrial volume index showed similarly strong associations with systolic blood pressure and age. In conclusion, we identified systolic blood pressure, waist circumference and smoking as modifiable determinants of the LV diastolic function in the 34-49-year-old participants of the Young Finns Study.Peer reviewe

    Cardiovascular risk factors in childhood and left ventricular diastolic function in adulthood

    Get PDF
    BACKGROUND AND OBJECTIVES: Cardiovascular risk factors, such as obesity, blood pressure, and physical inactivity, have been identified as modifiable determinants of left ventricular (LV) diastolic function in adulthood. However, the links between childhood cardiovascular risk factor burden and adulthood LV diastolic function are unknown. To address this lack of knowledge, we aimed to identify childhood risk factors associated with LV diastolic function in the participants of the Cardiovascular Risk in Young Finns Study. METHODS: Study participants (N = 1871; 45.9% men; aged 34-49 years) were examined repeatedly between the years 1980 and 2011. We determined the cumulative risk exposure in childhood (age 6-18 years) as the area under the curve for systolic blood pressure, adiposity (defined by using skinfold and waist circumference measurements), physical activity, serum insulin, triglycerides, total cholesterol, and high- and low-density lipoprotein cholesterols. Adulthood LV diastolic function was defined by using E/Ă© ratio. RESULTS: Elevated systolic blood pressure and increased adiposity in childhood were associated with worse adulthood LV diastolic function, whereas higher physical activity level in childhood was associated with better adulthood LV diastolic function (P,.001 for all). The associations of childhood adiposity and physical activity with adulthood LV diastolic function remained significant (both P,.05) but were diluted when the analyses were adjusted for adulthood systolic blood pressure, adiposity, and physical activity. The association between childhood systolic blood pressure and adult LV diastolic function was diluted to nonsignificant (P =.56). CONCLUSIONS: Adiposity status and the level of physical activity in childhood are independently associated with LV diastolic function in adulthood.Peer reviewe

    Metabolic Regulation in Progression to Autoimmune Diabetes

    Get PDF
    Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes

    Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress

    No full text
    \u3cp\u3eThe intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall.\u3c/p\u3

    Early probiotic supplementation and the risk of celiac disease in children at genetic risk

    No full text
    Abstract Probiotics are linked to positive regulatory effects on the immune system. The aim of the study was to examine the association between the exposure of probiotics via dietary supplements or via infant formula by the age of 1 year and the development of celiac disease autoimmunity (CDA) and celiac disease among a cohort of 6520 genetically susceptible children. Use of probiotics during the first year of life was reported by 1460 children. Time-to-event analysis was used to examine the associations. Overall exposure of probiotics during the first year of life was not associated with either CDA (n = 1212) (HR 1.15; 95%CI 0.99, 1.35; p = 0.07) or celiac disease (n = 455) (HR 1.11; 95%CI 0.86, 1.43; p = 0.43) when adjusting for known risk factors. Intake of probiotic dietary supplements, however, was associated with a slightly increased risk of CDA (HR 1.18; 95%CI 1.00, 1.40; p = 0.043) compared to children who did not get probiotics. It was concluded that the overall exposure of probiotics during the first year of life was not associated with CDA or celiac disease in children at genetic risk
    corecore