3,224 research outputs found

    The thermal conductivity reduction in HgTe/CdTe superlattices

    Full text link
    The techniques used previously to calculate the three-fold thermal conductivity reduction due to phonon dispersion in GaAs/AlAs superlattices (SLs) are applied to HgTe/CdTe SLs. The reduction factor is approximately the same, indicating that this SL may be applicable both as a photodetector and a thermoelectric cooler.Comment: 5 pages, 2 figures; to be published in Journal of Applied Physic

    Quantum simulations of the superfluid-insulator transition for two-dimensional, disordered, hard-core bosons

    Full text link
    We introduce two novel quantum Monte Carlo methods and employ them to study the superfluid-insulator transition in a two-dimensional system of hard-core bosons. One of the methods is appropriate for zero temperature and is based upon Green's function Monte Carlo; the other is a finite-temperature world-line cluster algorithm. In each case we find that the dynamical exponent is consistent with the theoretical prediction of z=2z=2 by Fisher and co-workers.Comment: Revtex, 10 pages, 3 figures (postscript files attached at end, separated by %%%%%% Fig # %%%%%, where # is 1-3). LA-UR-94-270

    Center of mass and relative motion in time dependent density functional theory

    Full text link
    It is shown that the exchange-correlation part of the action functional Axc[ρ(r,t)]A_{xc}[\rho (\vec r,t)] in time-dependent density functional theory , where ρ(r,t)\rho (\vec r,t) is the time-dependent density, is invariant under the transformation to an accelerated frame of reference ρ(r,t)ρ(r,t)=ρ(r+x(t),t)\rho (\vec r,t) \to \rho ' (\vec r,t) = \rho (\vec r + \vec x (t),t), where x(t)\vec x (t) is an arbitrary function of time. This invariance implies that the exchange-correlation potential in the Kohn-Sham equation transforms in the following manner: Vxc[ρ;r,t]=Vxc[ρ;r+x(t),t]V_{xc}[\rho '; \vec r, t] = V_{xc}[\rho; \vec r + \vec x (t),t]. Some of the approximate formulas that have been proposed for VxcV_{xc} satisfy this exact transformation property, others do not. Those which transform in the correct manner automatically satisfy the ``harmonic potential theorem", i.e. the separation of the center of mass motion for a system of interacting particles in the presence of a harmonic external potential. A general method to generate functionals which possess the correct symmetry is proposed

    Anisotropic two-dimensional Heisenberg model by Schwinger-boson Gutzwiller projected method

    Full text link
    Two-dimensional Heisenberg model with anisotropic couplings in the xx and yy directions (JxJyJ_x \neq J_y) is considered. The model is first solved in the Schwinger-boson mean-field approximation. Then the solution is Gutzwiller projected to satisfy the local constraint that there is only one boson at each site. The energy and spin-spin correlation of the obtained wavefunction are calculated for systems with up to 20×2020 \times 20 sites by means of the variational Monte Carlo simulation. It is shown that the antiferromagnetic long-range order remains down to the one-dimensional limit.Comment: 15 pages RevTex3.0, 4 figures, available upon request, GWRVB8-9

    Effect of inter-wall surface roughness correlations on optical spectra of quantum well excitons

    Full text link
    We show that the correlation between morphological fluctuations of two interfaces confining a quantum well strongly suppresses a contribution of interface disorder to inhomogeneous line width of excitons. We also demonstrate that only taking into account these correlations one can explain all the variety of experimental data on the dependence of the line width upon thickness of the quantum well.Comment: 13 pages, 8 figures, Revtex4, submitted to PR

    Initial Hubble Diagram Results from the Nearby Supernova Factory

    Full text link
    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.Comment: Short version of proceedings for ICHEP08, Philadelphia PA, July 2008; see v1 for full-length versio

    Non-circular semiconductor nanorings of type I and II: Emission kinetics in the exciton Aharonov-Bohm effect

    Full text link
    Transition energies and oscillator strengths of excitons in dependence on magnetic field are investigated in type I and II semiconductor nanorings. A slight deviation from circular (concentric) shape of the type II nanoring gives a better observability of the Aharonov-Bohm oscillations since the ground state is always optically active. Kinetic equations for the exciton occupation are solved with acoustic phonon scattering as the major relaxation process, and absorption and luminescence spectra are calculated showing deviations from equilibrium. The presence of a non-radiative exciton decay leads to a quenching of the integrated photoluminescence with magnetic field.Comment: The first version submitted to Phys. Rev. B on April 16, 2007. Revised (this) version on July 31, 200

    Time-dependent density functional theory beyond the adiabatic local density approximation

    Get PDF
    In the current density functional theory of linear and nonlinear time-dependent phenomena, the treatment of exchange and correlation beyond the level of the adiabatic local density approximation is shown to lead to the appearance of viscoelastic stresses in the electron fluid. Complex and frequency-dependent viscosity/elasticity coefficients are microscopically derived and expressed in terms of properties of the homogeneous electron gas. As a first consequence of this formalism, we provide an explicit formula for the linewidths of collective excitations in electronic systems.Comment: RevTeX, 4 page
    corecore