130 research outputs found

    Energy Comparison between a Load Sensing System and Electro-Hydraulic Solutions Applied to a 9-Ton Excavator

    Get PDF
    With the increasingly stringent regulations on air quality and the consequent emission limits for internal combustion engines, researchers are concentrating on studying new solutions for improving efficiency and energy saving even in off-road mobile machines. To achieve this task, pump-controlled or displacement-controlled systems have inspired interest for applications in offroad working machines. Generally, these systems are derived from the union of a hydraulic machine coupled to an electric one to create compact components that could be installed near the actuator. The object of study of this work is a 9-ton excavator, whose hydraulic circuit is grounded on load sensing logic. The validated mathematical model, created previously in the Simcenter Amesim© environment, represents the starting point for developing electro-hydraulic solutions. Electric components have been inserted to create different architectures, both with open-and closed-circuit layouts, in order to compare the energy efficiency of the different configurations with respect to the traditional load sensing system. The simulations of a typical working cycle show the energy benefits of electrohydraulic solutions that allow for drastically reducing the mechanical energy required by the diesel engine and, consequently, the fuel consumption. This is mainly possible because of the elimination of directional valves and pressure compensators, which are necessary in a load sensing circuit, but are also a source of great energy dissipations. The results show that closed-circuit solutions produce the greatest benefits, with higher energy efficiencies than the open-circuit solution. Furthermore, closed-circuit configurations require fewer components, allowing for more compact and lighter solutions, as well as being cheaper

    CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease

    Get PDF
    This study was aimed to investigate the predictive value of the radiomics features extracted from pericoronaric adipose tissue & mdash; around the anterior interventricular artery (IVA) & mdash; to assess the condition of coronary arteries compared with the use of clinical characteristics alone (i.e., risk factors). Clinical and radiomic data of 118 patients were retrospectively analyzed. In total, 93 radiomics features were extracted for each ROI around the IVA, and 13 clinical features were used to build different machine learning models finalized to predict the impairment (or otherwise) of coronary arteries. Pericoronaric radiomic features improved prediction above the use of risk factors alone. In fact, with the best model (Random Forest + Mutual Information) the AUROC reached 0.820 +/- 0.076 . As a matter of fact, the combined use of both types of features (i.e., radiomic and clinical) allows for improved performance regardless of the feature selection method used. Experimental findings demonstrated that the use of radiomic features alone achieves better performance than the use of clinical features alone, while the combined use of both clinical and radiomic biomarkers further improves the predictive ability of the models. The main contribution of this work concerns: (i) the implementation of multimodal predictive models, based on both clinical and radiomic features, and (ii) a trusted system to support clinical decision-making processes by means of explainable classifiers and interpretable features

    A computational study on temperature variations in mrgfus treatments using prf thermometry techniques and optical probes

    Get PDF
    Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are currently emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound waves can be used to increase the temperature inside the target solid tumors, leading to apoptosis or necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery (MRgFUS) technology represents a valid application of this ultrasound property, mainly used in oncology and neurology. In this paper; patient safety during MRgFUS treatments was investigated by a series of experiments in a tissue-mimicking phantom and performing ex vivo skin samples, to promptly identify unwanted temperature rises. The acquired MR images, used to evaluate the temperature in the treated areas, were analyzed to compare classical proton resonance frequency (PRF) shift techniques and referenceless thermometry methods to accurately assess the temperature variations. We exploited radial basis function (RBF) neural networks for referenceless thermometry and compared the results against interferometric optical fiber measurements. The experimental measurements were obtained using a set of interferometric optical fibers aimed at quantifying temperature variations directly in the sonication areas. The temperature increases during the treatment were not accurately detected by MRI-based referenceless thermometry methods, and more sensitive measurement systems, such as optical fibers, would be required. In-depth studies about these aspects are needed to monitor temperature and improve safety during MRgFUS treatments

    Learning more with less: Conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images

    Get PDF
    Accurate Computer-Assisted Diagnosis, associated with proper data wrangling, can alleviate the risk of overlooking the diagnosis in a clinical environment. Towards this, as a Data Augmentation (DA) technique, Generative Adversarial Networks (GANs) can synthesize additional training data to handle the small/fragmented medical imaging datasets collected from various scanners; those images are realistic but completely different from the original ones, filling the data lack in the real image distribution. However, we cannot easily use them to locate disease areas, considering expert physicians' expensive annotation cost. Therefore, this paper proposes Conditional Progressive Growing of GANs (CPGGANs), incorporating highly-rough bounding box conditions incrementally into PGGANs to place brain metastases at desired positions/sizes on 256 X 256 Magnetic Resonance (MR) images, for Convolutional Neural Network-based tumor detection; this first GAN-based medical DA using automatic bounding box annotation improves the training robustness. The results show that CPGGAN-based DA can boost 10% sensitivity in diagnosis with clinically acceptable additional False Positives. Surprisingly, further tumor realism, achieved with additional normal brain MR images for CPGGAN training, does not contribute to detection performance, while even three physicians cannot accurately distinguish them from the real ones in Visual Turing Test.Comment: 9 pages, 7 figures, accepted to CIKM 2019 (acceptance rate: 19%

    Functional Living Skills: A Non-Immersive Virtual Reality Training for Individuals with Major Neurocognitive Disorders

    Get PDF
    The loss of functional living skills (FLS) is an essential feature of major neurocognitive disorders (M-NCD); virtual reality training (VRT) offers many possibilities for improving FLS in people with M-NCD. The aim of our study was to verify the effectiveness of a non-immersive VRT on FLS for patients with M-NCD. VRT was carried out for 10 to 20 sessions, by means of four 3D apps developed in our institute and installed on a large touch screen. The experimental group (EG) and the control group (CG) included 24 and 18 patients with M-NCD, respectively. They were administered the in vivo test (in specific hospital places reproducing the natural environments) at T1 (pre-training) and T3 (post-training); at T2, only EG was administered VRT. Statistically significant differences between EG and CG in all the in vivo tests were found in the number of correct responses; during VRT, the number of correct responses increased, while the execution times and the number of clues decreased. The improvement in the in vivo tests appeared to be related to the specific VRT applied. The satisfaction of participants with the VRT was moderate to high

    ACDC: Automated Cell Detection and Counting for Time-Lapse Fluorescence Microscopy.

    Get PDF
    Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a 3.7× speed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of 76.84 and 88.64 and the Pearson coefficients of 0.99 and 0.96, calculated against the manual cell counting, on the two tested datasets

    Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events

    Get PDF
    open20siAcknowledgements: EPVL is undertaking a PhD funded by the Cambridge School of Clinical Medicine, Frank Edward Elmore Fund and the Medical Research Council’s Doctoral Training Partnership [award reference: 1966157]. JMT is supported by a Wellcome Trust Clinical Research Career Development Fellowship [211100/Z/18/Z], the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre and the British Heart Foundation Cambridge Centre of Research Excellence. NRE was supported by a Research Training Fellowship from The Dunhill Medical Trust [RTF44/0114]. MMC was supported by fellowships from the Royal College of Surgeons of England, and the British Heart Foundation [BHF; FS/16/29/31957]. HP is undertaking a PhD with a BHF CRE studentship. FJG is an NIHR Senior Investigator. LR and ES were supported by The Mark Foundation for Cancer Research and Cancer Research UK (CRUK) Cambridge Centre [C9685/A25177]. MR is supported by AstraZeneca Oncology R&D. ES receives additional support provided by the NIHR Cambridge Biomedical Research Centre. FAG receives funding from CRUK. EAW receives support from the NIHR CRN. CBS acknowledges support from the Leverhulme Trust project on ‘Breaking the non-convexity barrier’, the Philip Leverhulme Prize, the EPSRC grants EP/S026045/1 and EP/T003553/1, the EPSRC Centre Nr. EP/N014588/1, the Wellcome Innovator Award RG98755, European Union Horizon 2020 research and innovation programmes under the Marie Skodowska-Curie grant agreement No. 777826 NoMADS and No. 691070 CHiPS, the Cantab Capital Institute for the Mathematics of Information and the Alan Turing Institute. JHFR is part-supported by the NIHR Cambridge Biomedical Research Centre, the British Heart Foundation, HEFCE, the Wellcome Trust and the EPSRC grant [EP/N014588/1] for the University of Cambridge Centre for Mathematical Imaging in Healthcare. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk.noneLe E.P.V.; Rundo L.; Tarkin J.M.; Evans N.R.; Chowdhury M.M.; Coughlin P.A.; Pavey H.; Wall C.; Zaccagna F.; Gallagher F.A.; Huang Y.; Sriranjan R.; Le A.; Weir-McCall J.R.; Roberts M.; Gilbert F.J.; Warburton E.A.; Schonlieb C.-B.; Sala E.; Rudd J.H.F.Le E.P.V.; Rundo L.; Tarkin J.M.; Evans N.R.; Chowdhury M.M.; Coughlin P.A.; Pavey H.; Wall C.; Zaccagna F.; Gallagher F.A.; Huang Y.; Sriranjan R.; Le A.; Weir-McCall J.R.; Roberts M.; Gilbert F.J.; Warburton E.A.; Schonlieb C.-B.; Sala E.; Rudd J.H.F

    Italian adaptation of the Uniform Data Set Neuropsychological Test Battery (I-UDSNB 1.0): development and normative data

    Get PDF
    Background: Neuropsychological testing plays a cardinal role in the diagnosis and monitoring of Alzheimer’s disease. A major concern is represented by the heterogeneity of the neuropsychological batteries currently adopted in memory clinics and healthcare centers. The current study aimed to solve this issue. Methods: Following the initiative of the University of Washington’s National Alzheimer’s Coordinating Center (NACC), we presented the Italian adaptation of the Neuropsychological Test Battery of the Uniform Data Set (I-UDSNB). We collected data from 433 healthy Italian individuals and employed regression models to evaluate the impact of demographic variables on the performance, deriving the reference norms. Results: Higher education and lower age were associated with a better performance in the majority of tests, while sex affected only fluency tests and Digit Span Forward. Conclusions: The I-UDSNB offers a valuable and harmonized tool for neuropsychological testing in Italy, to be used in clinical and research settings
    • …
    corecore