49 research outputs found

    Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I

    Get PDF
    Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Reasons for not using smoking cessation aids

    Get PDF
    Abstract Background Few smokers use effective smoking cessation aids (SCA) when trying to stop smoking. Little is known why available SCA are used insufficiently. We therefore investigated the reasons for not using SCA and examined related demographic, smoking behaviour, and motivational variables. Methods Data were collected in two population-based studies testing smoking cessation interventions in north-eastern Germany. A total of 636 current smokers who had never used SCA and had attempted to quit or reduce smoking within the last 12 months were given a questionnaire to assess reasons for non-use. The questionnaire comprised two subscales: "Social and environmental barriers" and "SCA unnecessary." Results The most endorsed reasons for non-use of SCA were the belief to be able to quit on one's own (55.2%), the belief that help is not necessary (40.1%), and the belief that smoking does not constitute a big problem in one's life (36.5%). One quarter of all smokers reported that smoking cessation aids are not helpful in quitting and that the aids cost too much. Smokers intending to quit agreed stronger to both subscales and smokers with lower education agreed stronger to the subscale "Social and environmental barriers". Conclusion Main reasons for non-use of SCA are being overly self-confident and the perception that SCA are not helpful. Future interventions to increase the use of SCA should address these reasons in all smokers.</p

    ReSurveyEurope: A database of resurveyed vegetation plots in Europe

    Get PDF
    Aims: We introduce ReSurveyEurope - a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions. Results: ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover-abundance classes such as variants of the Braun-Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020. Conclusions: ReSurveyEurope is a new resource to address a wide range of research questions on fine-scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well-established European Vegetation Archive (EVA). ReSurvey:Europe data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Intraspecific trait variation in alpine plants relates to their elevational distribution

    No full text
    Climate warming is shifting the distributions of mountain plant species to higher elevations. Cold-adapted plant species are under increasing pressure from novel competitors that are encroaching from lower elevations. Plant capacity to adjust to these pressures may be measurable as variation in trait values within a species. In particular, the strength and patterns of intraspecific trait variation along abiotic and biotic gradients can inform us whether and how species can adjust their anatomy and morphology to persist in a changing environment. Here, we tested whether species specialized to high elevations or with narrow elevational ranges show more conservative (i.e. less variable) trait responses across their elevational distribution, or in response to neighbours, than species from lower elevations or with wider elevational ranges. We did so by studying intraspecific trait variation of 66 species along 40 elevational gradients in four countries in both hemispheres. As an indication of potential neighbour interactions that could drive trait variation, we also analysed plant species’ height ratio, its height relative to its nearest neighbour. Variation in alpine plant trait values over elevation differed depending on a species’ median elevation and the breadth of its elevational range, with species with lower median elevations and larger elevational range sizes showing greater trait variation, i.e. a steeper slope in trait values, over their elevational distributions. These effects were evidenced by significant interactions between species’ elevation and their elevational preference or range for several traits: vegetative height, generative height, specific leaf area and patch area. The height ratio of focal alpine species and their neighbours decreased in the lower part of their distribution because neighbours became relatively taller at lower elevations. In contrast, species with lower elevational optima maintained a similar height ratio with neighbours throughout their range. Synthesis. We provide evidence that species from lower elevations and those with larger range sizes show greater intraspecific trait variation, which may indicate a greater ability to respond to environmental changes. Also, larger trait variation of species from lower elevations may indicate stronger competitive ability of upslope shifting species, posing one further threat to species from higher ranges
    corecore