52 research outputs found

    π-Hole bonding in a new co-crystal hydrate of gallic acid and pyrazine: static and dynamic charge density analysis

    Get PDF
    A new cocrystal hydrate of gallic acid with pyrazine (4GA, Py, 4H2O; GA4PyW4) was obtained and characterized by single crystal X-ray diffraction. In addition to structure determination, experimental charge density analysis was carried out in terms of Multipole Modelling (MP), X-ray wavefunction refinement (XWR) and maximum entropy method (MEM). As a part of XWR, the structural refinement via Hirshfeld atom refinement was carried out and resulted in O-H bond lengths close to values from neutron diffraction. A systematic comparison of molecular conformations and aromatic interactions in this new cocrystal hydrate was performed with other existing polymorphs of gallic acid. In GA4PyW4, the two symmetry-independent gallic acid molecules have a syn COOH orientation and form the common (COOH)2 dimeric synthon. The carboxyl C atom displays the characteristics of π-holes with electropositive regions above and below the molecular plane and engages in acceptor-donor interactions with oxygen atoms of acidic O-H groups and phenol groups of neighbouring gallic acid molecules. The signature of the π-hole was identified from experimental charge density analysis, both in static density maps in MP and XWR as well as dynamic density in MEM, but it cannot be pinned down to a specific atom-atom interaction. This study presents the first comparison between an XWR and a MEM experimental electron-density determination

    Conformational trimorphism of bis(2,6-dimesitylphenyl)ditelluride

    Get PDF
    Besides the previously known α-form (monoclinic, P21/c, Z=4) of bis(2,6-dimesitylphenyl)ditelluride, two new polymorphic modifications, namely the β-form (monoclinic, P21/c, Z=8) and the γ-form (triclinic, P1̅, Z=2), were obtained serendipitously during chemical reactions. In all three modifications, the individual molecules possess significantly different conformations and bond parameters, such as Te–Te bond lengths, C–Te–Te bond angles, C–Te–Te–C torsion angles and intramolecular Menshutkin interactions, which is also reflected in their non-covalent interactions with adjacent molecules in the crystal lattice via London dispersion and electrostatic forces. The interplay between intermolecular and intramolecular forces in these conformational polymorphs was investigated using quantum chemical calculations, which reveal that the β-form should be thermodynamically stable at absolute zero. In contrast, crystallization experiments and thermoanalytical investigations indicate that the α-form is stable at high temperatures and therefore, both forms might be related by enantiotropis

    Covalency and ionicity do not oppose each other : relationship between Si-O bond character and basicity of siloxanes

    Get PDF
    Covalency and ionicity are orthogonal rather than antipodal concepts. We demonstrate for the case of siloxane systems [R3Si-(O-SiR2)(n)-O-SiR3] that both covalency and ionicity of the Si-O bonds impact on the basicity of the Si-O-Si linkage. The relationship between the siloxane basicity and the Si-O bond character has been under debate since previous studies have presented conflicting explanations. It has been shown with natural bond orbital methods that increased hyperconjugative interactions of LP(O)->sigma*(Si-R) type, that is, increased orbital overlap and hence covalency, are responsible for the low siloxane basicity at large Si-O-Si angles. On the other hand, increased ionicity towards larger Si-O-Si angles has been revealed with real-space bonding indicators. To resolve this ostensible contradiction, we perform a complementary bonding analysis, which combines orbital-space, real-space, and bond-index considerations. We analyze the isolated disiloxane molecule H3SiOSiH3 with varying Si-O-Si angles, and n-membered cyclic siloxane systems Si2H4O(CH2)(n-3). All methods from quite different realms show that both covalent and ionic interactions increase simultaneously towards larger Si-O-Si angles. In addition, we present highly accurate absolute hydrogen-bond interaction energies of the investigated siloxane molecules with water and silanol as donors. It is found that intermolecular hydrogen bonding is significant at small Si-O-Si angles and weakens as the Si-O-Si angle increases until no stable hydrogen-bond complexes are obtained beyond phi(SiOSi) = 168 degrees, angles typically displayed by minerals or polymers. The maximum hydrogen-bond interaction energy, which is obtained at an angle of 105 degrees, is 11.05 kJ mol(-1) for the siloxane-water complex and 18.40 kJ mol(-1) for the siloxane-silanol complex

    Towards crystal structure prediction of complex organic compounds - a report on the fifth blind test

    Get PDF
    Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1: 1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories - a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome

    Charge Density Analysis of Crystals of Nicotinamide with Salicylic Acid and Oxalic Acid: An Insight into the Salt to Cocrystal Continuum

    No full text
    Charge density analysis from both experimental and theoretical points of view on two molecular complexes: one is formed between nicotinamide and salicylic acid, and the other formed between nicotinamide and oxalic acid brings out the quantitative topological features to distinguish a cocrystal from a salt

    Characterization of Interactions Involving Bromine in 2,2-Dibromo2,3-dihydroinden-1-one via Experimental Charge Density Analysis

    No full text
    Experimental and theoretical charge density analyses on 2,2-dibromo-2,3-dihydroinden-1-one have been carried out to quantify the topological features of a short CBr....O halogen bond with nearly linear geometry (2.922 angstrom, angle CBr....O = 172.7 degrees) and to assess the strength of the interactions using the topological features of the electron density. The electrostatic potential map indicates the presence of the s-hole on bromine, while the interaction energy is comparable to that of a moderate OH....O hydrogen bond. In addition, the energetic contribution of CH.....Br interaction is demonstrated to be on par with that of the CBr....O halogen bond in stabilizing the crystal structure

    Are we missing the silver lining of COVID-19 pandemic: An analytical study to determine effects of three COVID-19 peaks on antimicrobial susceptibility of Staphylococcus aureus isolates

    No full text
    Background: Given the evolving nature of COVID-19, for better understanding of its effect on antimicrobial resistance of Staphylococcus aureus (S. aureus), it becomes crucial that we follow the resistance patterns across different surges of COVID-19 cases. Methods: This prospective surveillance study extended over two years from January 2020-March 2022 and was conducted in a healthcare center of North India. Susceptibility patterns of Staphylococcus aureus during January-March 2020 were considered as prepandemic patterns. Processing of clinical specimens, identification of S. aureus, and in-vitro antibiotic susceptibility testing were performed in accordance with standard microbiological testing procedures and Clinical Laboratory Standard Institute guidelines. Results: Lowest prevalence (38.9%) of Methicillinresistant S. aureus was reported during January-March 2021 and July-September 2021. More than 50% S. aureus isolates were susceptible to linezolid, cotrimoxazole, tetracycline, and gentamicin in January-March 2020. In January-March 2021, ≥50% of S. aureus isolates from clinical specimens were additionally susceptible to clindamycin and erythromycin. Antibiotic agents of linezolid, tetracycline, clindamycin, and cotrimoxazole were susceptible in ≥50% of S. aureus isolates in January-March 2022. Conclusions: This study reveals a sharp decline in overall resistance to commonly prescribed antibiotic agents for S. aureus isolates after first peak of COVID-19 cases. However, same trend was not observed in subsequent peaks and probably we are approaching the same resistance levels that were seen prior to COVID-19 pandemic

    SF5 -Enolates in Ti(IV)-Mediated Aldol Reactions

    No full text
    The F···Ti bonding in the transition structures determines high trans- and syn-diastereoselectivities for aldol reactions of SF5-acetates with aldehydes in the presence of TiCl4 in the non-nucleophilic solvent CH2Cl2. Such bonding is canceled in nucleophilic solvents where opposite cis-stereochemistry is observed. The potential of thus obtained stereoisomeric SF5-aryl acrylates as dipolarophiles in the preparation of SF5-containing heterocycles is demonstrated

    Temperature-Induced Reversible First-Order Single Crystal to Single Crystal Phase Transition in Boc-gamma(4)(R)Val-Val-OH: Interplay of Enthalpy and Entropy

    No full text
    Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored
    corecore