92 research outputs found

    Assessing and testing anomaly detection for finding prostate cancer in spatially registered multi-parametric MRI

    Get PDF
    BackgroundEvaluating and displaying prostate cancer through non-invasive imagery such as Multi-Parametric MRI (MP-MRI) bolsters management of patients. Recent research quantitatively applied supervised target algorithms using vectoral tumor signatures to spatially registered T1, T2, Diffusion, and Dynamic Contrast Enhancement images. This is the first study to apply the Reed-Xiaoli (RX) multi-spectral anomaly detector (unsupervised target detector) to prostate cancer, which searches for voxels that depart from the background normal tissue, and detects aberrant voxels, presumably tumors.MethodsMP-MRI (T1, T2, diffusion, dynamic contrast-enhanced images, or seven components) were prospectively collected from 26 patients and then resized, translated, and stitched to form spatially registered multi-parametric cubes. The covariance matrix (CM) and mean μ were computed from background normal tissue. For RX, noise was reduced for the CM by filtering out principal components (PC), regularization, and elliptical envelope minimization. The RX images were compared to images derived from the threshold Adaptive Cosine Estimator (ACE) and quantitative color analysis. Receiver Operator Characteristic (ROC) curves were used for RX and reference images. To quantitatively assess algorithm performance, the Area Under the Curve (AUC) and the Youden Index (YI) points for the ROC curves were computed.ResultsThe patient average for the AUC and [YI] from ROC curves for RX from filtering 3 and 4 PC was 0.734[0.706] and 0.727[0.703], respectively, relative to the ACE images. The AUC[YI] for RX from modified Regularization was 0.638[0.639], Regularization 0.716[0.690], elliptical envelope minimization 0.544[0.597], and unprocessed CM 0.581[0.608] using the ACE images as Reference Image. The AUC[YI] for RX from filtering 3 and 4 PC was 0.742[0.711] and 0.740[0.708], respectively, relative to the quantitative color images. The AUC[YI] for RX from modified Regularization was 0.643[0.648], Regularization 0.722[0.695], elliptical envelope minimization 0.508[0.605], and unprocessed CM 0.569[0.615] using the color images as Reference Image. All standard errors were less than 0.020.ConclusionsThis first study of spatially registered MP-MRI applied anomaly detection using RX, an unsupervised target detection algorithm for prostate cancer. For RX, filtering out PC and applying Regularization achieved higher AUC and YI using ACE and color images as references than unprocessed CM, modified Regularization, and elliptical envelope minimization

    A Bayesian assessment of an approximate model for unconfined water flow in sloping layered porous media

    Get PDF
    The prediction of water table height in unconfined layered porous media is a difficult modelling problem that typically requires numerical simulation. This paper proposes an analytical model to approximate the exact solution based on a steady-state Dupuit–Forchheimer analysis. The key contribution in relation to a similar model in the literature relies in the ability of the proposed model to consider more than two layers with different thicknesses and slopes, so that the existing model becomes a special case of the proposed model herein. In addition, a model assessment methodology based on the Bayesian inverse problem is proposed to efficiently identify the values of the physical parameters for which the proposed model is accurate when compared against a reference model given by MODFLOW-NWT, the open-source finite-difference code by the U.S. Geological Survey. Based on numerical results for a representative case study, the ratio of vertical recharge rate to hydraulic conductivity emerges as a key parameter in terms of model accuracy so that, when appropriately bounded, both the proposed model and MODFLOW-NWT provide almost identical results

    The use of electric fields for edible coatings and films development and production: A review

    Get PDF
    Edible films and coatings can provide additional protection for food, while being a fully biodegradable, environmentally friendly packaging system. A diversity of raw materials used to produce edible coatings and films are extracted from marine and agricultural sources, including animals and plants. Electric fields processing holds advantage in producing safe, wholesome and nutritious food. Recently, the presence of a moderate electric field during the preparation of edible coatings and films was shown to influence their main properties, demonstrating its usefulness to tailor edible films and coatings for specific applications. This manuscript reviews the main aspects of the use of electric fields in the production of edible films and coatings, including the effect in their transport and mechanical properties, solubility and microstructure.Fundação para a Ciência e a Tecnologia (FCT), Portugal.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Optimum economic layout of forest harvesting work roads /

    No full text
    no.13

    Application of Spectral Algorithm Applied to Spatially Registered Bi-Parametric MRI to Predict Prostate Tumor Aggressiveness: A Pilot Study

    No full text
    Background: Current prostate cancer evaluation can be inaccurate and burdensome. Quantitative evaluation of Magnetic Resonance Imaging (MRI) sequences non-invasively helps prostate tumor assessment. However, including Dynamic Contrast Enhancement (DCE) in the examined MRI sequence set can add complications, inducing possible side effects from the IV placement or injected contrast material and prolonging scanning time. More accurate quantitative MRI without DCE and artificial intelligence approaches are needed. Purpose: Predict the risk of developing Clinically Significant (Insignificant) prostate cancer CsPCa (CiPCa) and correlate with the International Society of Urologic Pathology (ISUP) grade using processed Signal to Clutter Ratio (SCR) derived from spatially registered bi-parametric MRI (SRBP-MRI) and thereby enhance non-invasive management of prostate cancer. Methods: This pilot study retrospectively analyzed 42 consecutive prostate cancer patients from the PI-CAI data collection. BP-MRI (Apparent Diffusion Coefficient, High B-value, T2) were resized, translated, cropped, and stitched to form spatially registered SRBP-MRI. Efficacy of noise reduction was tested by regularizing, eliminating principal components (PC), and minimizing elliptical volume from the covariance matrix to optimize the SCR. MRI guided biopsy (MRBx), Systematic Biopsy (SysBx), combination (MRBx + SysBx), or radical prostatectomy determined the ISUP grade for each patient. ISUP grade ≥ 2 (Results: High correlation coefficients (R) (>0.55) and high AUC (=1.0) for linear and/or logistic fit from processed SCR and z-score for SRBP-MRI greatly exceed fits using prostate serum antigen, prostate volume, and patient age (R ~ 0.17). Patients assessed with combined MRBx + SysBx and from individual MRI scanners achieved higher R (DR = 0.207+/−0.118) than all patients used in the fits. Conclusions: In the first study, to date, spectral approaches for assessing tumor aggressiveness on SRBP-MRI have been applied and tested and achieved high values of R and exceptional AUC to fit the ISUP grade and CsPCA/CiPCA, respectively
    • …
    corecore