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Branch, National Institutes of Health (NIH), Bethesda, MD, United States, 4Department of Radiation
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Background: Evaluating and displaying prostate cancer through non-invasive

imagery such as Multi-Parametric MRI (MP-MRI) bolsters management of

patients. Recent research quantitatively applied supervised target algorithms

using vectoral tumor signatures to spatially registered T1, T2, Diffusion, and

Dynamic Contrast Enhancement images. This is the first study to apply the

Reed-Xiaoli (RX) multi-spectral anomaly detector (unsupervised target

detector) to prostate cancer, which searches for voxels that depart from the

background normal tissue, and detects aberrant voxels, presumably tumors.

Methods: MP-MRI (T1, T2, diffusion, dynamic contrast-enhanced images, or

seven components) were prospectively collected from 26 patients and then

resized, translated, and stitched to form spatially registered multi-parametric

cubes. The covariance matrix (CM) and mean m were computed from

background normal tissue. For RX, noise was reduced for the CM by filtering

out principal components (PC), regularization, and elliptical envelope

minimization. The RX images were compared to images derived from the

threshold Adaptive Cosine Estimator (ACE) and quantitative color analysis.

Receiver Operator Characteristic (ROC) curves were used for RX and

reference images. To quantitatively assess algorithm performance, the Area

Under the Curve (AUC) and the Youden Index (YI) points for the ROC curves

were computed.

Results: The patient average for the AUC and [YI] from ROC curves for RX from

filtering 3 and 4 PC was 0.734[0.706] and 0.727[0.703], respectively, relative to

the ACE images. The AUC[YI] for RX from modified Regularization was 0.638

[0.639], Regularization 0.716[0.690], elliptical envelope minimization 0.544

[0.597], and unprocessed CM 0.581[0.608] using the ACE images as

Reference Image. The AUC[YI] for RX from filtering 3 and 4 PC was 0.742

[0.711] and 0.740[0.708], respectively, relative to the quantitative color images.

The AUC[YI] for RX from modified Regularization was 0.643[0.648],

Regularization 0.722[0.695], elliptical envelope minimization 0.508[0.605],
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and unprocessed CM 0.569[0.615] using the color images as Reference Image.

All standard errors were less than 0.020.

Conclusions: This first study of spatially registered MP-MRI applied anomaly

detection using RX, an unsupervised target detection algorithm for prostate

cancer. For RX, filtering out PC and applying Regularization achieved higher

AUC and YI using ACE and color images as references than unprocessed CM,

modified Regularization, and elliptical envelope minimization.
KEYWORDS

anomaly and outlier detection, multi-parametric MRI, prostate cancer, tumor
detection, regularization, principal component analysis, image analysis, color analysis
Introduction

Optimal prostate cancer (PCa) management requires an

accurate evaluation of potential tumor aggressiveness (1–3).

Several clinical indicators (4–17), such as prostate specific

antigen (PSA) (7–9), seminal vesicle involvement (10, 11),

tumor volume (12–16), extraprostatic extension and other

MRI features (17–21), and the Gleason score (22) predict

clinical outcomes such as biochemical recurrence after

treatment (4–6) and cancer metastasis (10, 11, 14). However,

some data, such as PSA (8), are not consistently predictive of

outcome. By interpreting multi-parametric MRI using the

Prostate Imaging Reporting and Data System (PI-RADS)

protocol (17–20), radiologists apply a series of rules to

generate a PI-RADS score for the lesion. Visual inspection and

assessment of imaging or histology slices rely on the experience

and judgment of radiologists and pathologists (17–20), possibly

creating inconsistent evaluations due to inter-reader variability.

A more objective and quantitative approach could reduce

such variability.

To achieve this, there is interest in quantitatively applying and

assessing supervised target algorithms to spatially registered T1,

T2, diffusion, and dynamic contrast enhancement images at the

voxel level (23–28). Previous research examined tumors using

vectoral tumor signatures that were inserted into supervised target

algorithms applied to spatially registered MRI hypercubes. The

supervised target detection algorithms applied to (23–28)

assessing prostate cancer were adapted from remote sensing

applications designed to analyze hyperspectral images generated

from airborne platforms. The spectral signature helps discriminate

tumors (or targets in the case of remote sensing) from normal

tissue (or backgrounds). Instead of exploiting the unique spectral

content of a target, remote sensing can also peruse an image for

candidate targets by examining and finding pixels (or voxels) that

statistically depart from the background, also known as anomaly
02
detection. Although less specific than supervised target detection,

anomaly detection (29–31) can find unsuspected targets but is also

subject to detecting additional false positives. For multispectral or

hyperspectral images, the commonly used algorithm is called

Reed-Xiaoli (RX) (32) and computes the magnitude of a voxel’s

vector distance (in whitened space) from the background or

normal prostate. The larger the RX value, the more the voxel

departs from normal tissue. A hypersphere decision surface

surrounding the background provides a criterion for whether a

voxel is normal (inside the hypersphere) or anomalous (outside

the hypersphere).

Anomaly detection has also been applied to medical images

(33–38). However, this study significantly differs from previous

efforts. The background (normal prostate) is characterized by

second-order statistics such as a multi-dimensional covariance

matrix and mean, not features derived through spatial

processing. Specifically, most of the other studies extracted

features from images derived in a single modality, unlike the

work described in this manuscript. Previously, extra dimensions

were added (37, 38) through spatial processing from a single

modality. In another study, anomaly detection followed the

temporal evolution (35) of a contrast agent from a single

modality and considered time to be the “fourth dimension.” In

this study, voxels from structural (T1, T2), dynamic contrast

enhancement, and diffusion images composed the “fourth

dimension.” The RX algorithm is purely spectral and does not

require spatial processing. In addition, other studies employed

deep learning and artificial intelligence approaches, unlike the

present work, which used a faster, simpler algorithm (RX). The

present work, unlike deep learning approaches that require

retraining, can more easily be adapted to clinics that employ

different magnetic fields and pulse sequences (23) by using

whitening –dewhitening transforms.

This study of spatially registered multi-parametric MRI is

the first to apply an unsupervised target detection for prostate
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cancer, specifically the RX algorithm, that does not use a tumor

signature. The covariance matrix (CM) and mean background

vector proscribes the decision surface for RX, an anomaly

detector. The anomaly detector searches for voxels that depart

from the normal tissue, or background. Such an anomaly

detector may be sensitive to both higher and lesser

vascularized regions of the tumor and provide a more

complete assessment of the lesion.
Method and materials

Overall summary

Figure 1 shows schematically the procedures for computing

anomaly detection and generating the receiver operator

characteristic (ROC) curve. First, the MRI images are

collected, resized, translated, resampled, and stitched together

to assemble spatially registered hyperspectral image cubes. The

normal prostate is outlined to help form a mask that is applied to

the hyperspectral image cubes to aid calculations for RX (red

outline, arrow) and Adaptive Cosine Estimator (31) or ACE

(blue outline, arrow), a supervised target detection algorithm.

The normal prostate mask aids the hyperspectral statistics
Frontiers in Oncology 03
computation for the normal prostate and delineates the

normal prostate reference mask (orange arrow) for the ROC

calculations. The color (green outline) scheme, specifically the

RGB (red, green, and blue channels), is assigned to the washout

from the dynamic contrast enhancement and the high B from

the diffusion weighted images, respectively. The colors are

quantified using CIELAB computations (24). Color/CIELAB is

used to display tumors, to generate a Reference Mask.

Thresholds applied to the ACE (blue outline) and CIELAB

color (green outline, arrow) calculations help form two

independent tumor reference image masks that are used for

the ROC calculation (yellow outline). A signature of the tumor is

taken from the hyperspectral image cube and inserted into the

ACE calculation. Four options were examined for reducing noise

in the covariance matrix for the RX calculation (red outline):

principal component filtering, regularization, modified

regularization, and the unprocessed covariance matrix

(red outline).

The Methods and materials section qualitatively describes

the individual components, namely the spatial registered

hypercube assembly, reference mask, anomaly detector

generator, and assessment. The Appendix summarizes the

mathematics used to generate the components. More details

can be found in the cited references.
FIGURE 1

Schematic overview of processes that need to generate ROC curve (yellow outline). A spatially registered hypercube (purple outline, arrow) is
composed of MRI modalities. Reference mask options include ACE (blue outline) and CIELAB (green outline). Detection map from the RX
computation (red outline, arrow).
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Spatial registered hypercube assembly:
Study cohort

The Cancer Imaging Archive (TCIA) (39, 40), affiliated with the

National Institutes ofHealth (NIH), collected and stored patient data

from prostate tumor MRI and histology from whole-mount

prostatectomy specimens. This study followed the Declaration of

Helsinki (as revised in 2013). Since the imageswere anonymized, this

investigationwas determined to be IRB-exempt. This study followed

the Health Insurance Portability and Accountability Act guidelines.

A total of 26 patients were included. All patients had biopsy-proven

adenocarcinomaof theprostate,withamedianpatient ageof 60years

(range, 49 to 75 years), amedian PSA of 5.8 ng/ml (range, 2.3 to 23.7

ng/ml), and a median GS of 7 (range, 6 to 9). Eighteen of the 26

patientshad tumors larger than1cc.This studyplacedno restrictions

on tumor location within the prostate. Robotic-assisted radical

prostatectomy was performed at a median time of 60 days

(minimum 3 days, maximum 180 days) following MRI without

any intervening treatment.
Spatial registered hypercube assembly:
Whole mount prostatectomy
and histology

The whole mount prostatectomy histology has previously been

described indetail and is very briefly summarized (41–43). Following

radical prostatectomy, the specimen was fixed at room temperature

in formalin for 2 to 24 h and then placed in a customized 3D mold

that is based onMRI and sliced in sectionswith a separation of 6mm

in the axial direction, corresponding to the MRI axial plane section.

The individual tumor foci, dimensions, andGleason scores from the

histology slides were independently determined by two experienced

pathologists who were blinded to the MRI results.
Spatial registered hypercube assembly:
Magnetic resonance imaging

TheMRI collectionwas composed of structural (T1, T2) images,

diffusion-weighted images (DWIs), and dynamic contrast-enhanced

(DCE) images. The pulse sequences were described in earlier studies

(41–43). ThisMRIprotocol included triplanarT2Wturbo spin echo,

DWMRI, and axial pre-contrast T1-weighted axial 3D fastfield echo

DCE MRI sequences. A prior study (26) described their detailed

sequence parameters.
Spatial registered hypercube assembly:
Image processing, pre-analysis

DCE images consist of a time series at fixed locations in the

prostate, encompassing the entire prostate. These images display
Frontiers in Oncology 04
the evolution in time of contrast material over several hundred

seconds following injection. The DCE shows contrast uptake in

the tissues. By analyzing the DCE and exploiting the unique

tumor physiology, a portion of tumors may be identified. The

tracer concentration in the tissue that supplies and empties

through the tumor vasculature is described by a simple two

compartment model (23, 44, 45). For times greater than the time

to reach the peak uptake of the contrast material in a tumor (>50

s), every voxel was fitted with an exponentially decaying function

to form the washout (kep) images and the probability likelihood

(prob) images.

All MRI images were digitally resized (23–28) to 1 mm

resolution in the transverse direction. Using the known location

of the patient’s position on the table, all slices were resized to

6 mm spacing and aligned using resampling. The Dynamic

Contrast Enhancement images were treated as the reference

for spatial registration. Due to the short time intervals between

scan types (<20 min), small rigid adjustments (minor transverse

translation) were applied to the structural, diffusion, and DCE

images. A “cube” is composed of stacked individual slices that

were scaled, translated, and resliced to be spatially registered at

the pixel level. These “ three-dimensional” (two transverse

directions plus a spectral dimension composed of MP-MRI

sequences) cubes were “stitched” together into a narrow three-

dimensional hypercube to depict the entire prostate and other

tissues in the field of view of the MRI scan. This stitching, or

mosaicking, follows the approach used in remote sensing, in

which large areas are stitched together. Mosaicking or stitching

cubes greatly increases the processing speed for handling high-

dimensional data. The spectral content of the hypercube had

seven components (23–28): T1 (pre-contrast), T1 (maximum

contrast), T2, ADC, DWI-high B (B = 1,000 s/mm2), Washout or

kep from DCE.
Anomaly detector generator: Anomaly
detector (RX)

An anomaly detector (29–31) examines and computes

statistics, such as mean value and covariance matrix, that

characterize a background (the normal prostate organ) and

identifies targets (tumor, benign prostatic hyperplasia) by

noting voxels that quantitatively depart from the background.

In contrast, supervised target detection uses a target signature to

help distinguish a target from the background. This study, like

many that examine multi- and hyperspectral images, applies the

RX (32) algorithm to detect anomalous voxels. The RX

algorithm queries each voxel and computes the voxel value

and background statistics for all components, specifically the

covariance matrix and mean. A voxel’s RX value (32) is the

voxel’s Mahalanobis distance (Euclidean distance in whitened

space) from the background (normal prostate) mean. A voxel’s

large RX value shows a large deviation from the background. The
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RX decision surface is a hypersphere with background residing

inside a sphere and anomalies outside. The covariance matrix

corrects and accounts for correlations among the different

components (for example, the correlation between ADC and

DWI) to get a true measure of the aggregate contribution of each

component to the deviation of the voxel from the background.

Actual data fails to follow the ideal RX probability distribution,

namely a chi-square distribution (32) requiring ad-hoc anomaly

cutoff thresholds or employing acceptable false alarm rates. The

Appendix summarizes some of the mathematics behind the RX

algorithm. For more details, see references (29–32).
Anomaly detector generator:
Filtering noise

Computing the RX covariance matrix generates principal

components (46). Principal components are linear combinations of

all MRI components but are orthogonal or totally decorrelated from

each other. The principal components are ordered based on their

eigenvalues or statistical variation. Well-resolved images have large

eigenvalues and high variation. In contrast, noisy principal

components have small eigenvalues. Noise is reduced by filtering

and eliminating the noisy (low eigenvalue) principal components,

resulting in a more accurate RX calculation. The Appendix

summarizes some of the mathematics behind the filtering of

principal components. For more details, see references (27, 28, 47).
Anomaly detector generator:
Regularization and shrinkage

Regularization is another way to correct for the

imperfections of the computed covariance matrix. The

statistics describing the background (normal prostate) should

follow a normal distribution. However, the analytical formula for

the covariance matrix results in only an approximation. The goal

of shrinkage regularization (27, 28, 48) is to perturb the original

covariance matrix CM(g) by mixing in a diagonal matrix with a

mixing parameter g to generate a regularized or modified

regularized covariance matrix. The appropriate g is chosen to

maximize the normal distribution. Regularized or modified

regularized covariance matrix generation follows the same

procedure but differs in the mixing diagonal matrix. The

Appendix summarizes some of the mathematics behind

regularization. For more details, see references (27, 28, 48).
Anomaly detector generator: Elliptical
volume minimization

Elliptical volume minimization (EVM) (49) provides another

approach for reducing the effects of noise in the covariance matrix
Frontiers in Oncology 05
calculation. EVM does not use an analytical solution. Instead, EVM

sequentially removes 10% of randomly chosen pixel searches and

computes and records the hypervolume elliptical volume for the

remaining90%of theprostatepixels.Theminimumelliptical volume

after the search is chosen, presumably reducing the effects of the 10%

aberrant voxels.
Reference mask: Color
quantification: CIELAB

Perceiving color is a neuro-psychological phenomenon that

depends on the observer and display (50–52). Objectively

quantifying color to assess images is, therefore, fraught with

challenges. However, considerable empirical research and effort

have allowed for the conversion of color perception into

quantitative metrics, specifically by using the CIELAB color space,

also referred to the asL*a*b* color space (50–52). CIELAB is designed

to relate to the CIE standard observer. The CIE standard observer is

generated from color matching experiments conducted under

laboratory conditions. The CIELAB is designed to be independent

of any device, such as a computer monitor or a printer. It is based on

theopponent colormodel ofhumanvision,where red andgreen form

anopponentpair, andblueandyellowformanopponentpair.Color is

described by three values:L* for perceptual lightness anda* and b* for

the four unique colors of human vision: red, green, blue, and yellow.

The L* defines black at 0 and white at 100. The a* axis follows the

green–red opponent colors, with negative values toward green and

positive values toward red. The b* axis represents blue–yellow

opponents, with negative numbers toward blue and positive toward

yellow. Yellow for this study is related to tumor in this study and is of

most interest. The Appendix summarizes some of the mathematics

behind coloring. For more details, see references (50–52).
Reference mask: ACE

A target, such as a tumor, can be characterized by its spectral

signature. The spectral signature is a vector whose components

are values from each of the MRI modalities. The tumor signature

differs from the background (normal prostate) vector. The

difference between the tumor and normal prostate vectors is

exploited by supervised target algorithms. The adaptive cosine

estimator (ACE) is one example of supervised target detection.

The Appendix summarizes some of the mathematics behind

ACE. For more details, see references (22–28, 31).
Assessment: Receiver operator
characteristic

The receiver operator characteristic (ROC) curve (53)

evaluates the performance of a binary target detection
frontiersin.org
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algorithm, specifically the RX anomaly detector and its variants

(filtering, regularization). In this study, for a given RX anomaly

detector threshold, each voxel in normal tissue is classified as

either a target (above the RX threshold) or a normal prostate

(below the RX threshold). This study uses two types of reference

images, namely ACE (threshold = 0.65) and CIELAB (threshold

= 0.35), to depict the targets. The ROC curve displays the

sensitivity (how well RX characterizes targets) and the 1-

Specificity (how well RX characterizes background) for all RX

thresholds. The area under the curve (AUC) from the ROC

curve and the Youden Index (YI) or maximum accuracy

summarize RX performance. The Appendix summarizes some

of the mathematics behind the ROC curve. For more details, see

reference (53).
Reference mask and assessment:
Reference masks/threshold cutoffs

Ideally, a “ground truth” imagemaskdepicts theactual locations,

sizes, and shapes of the tumors. Current practice attributes “ ground

truth” to the pathologist’s assessment andmarkings on the histology

slides derived from a whole-mount prostatectomy. Pathology

evaluation is acceptable for Gleason score and tumor volume

determinations. However, pathology assessment of the histology

for tumor location and position for MRI suffers from a few

limitations. The histology preparations can result in distortions,

shrinkage, and tearing. Tissues imaged by MRI are supported by

muscles and other soft tissues and subject to gravity, further

complicating their registration to histology slides. Due to the

absence of any registration points, it is impossible to precisely

register the histology slides to the axial MRI images in both the

axial and transverse directions.

The radiologist’s delineation of tumors on the multi-parametric

MRI might have served as candidate “ground truth” but it was not

available. Instead, the images derived from ACE and Color/

CIELABS applied to the spatially registered MRI marked the
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tumors at the voxel level for the ROC curve computations. In-

scene signatures were inserted into the ACE calculations. The

thresholds from the ACE or Color/CIELABS were taken from a

previous study (24) that computed the correlation coefficients of

tumor volumes derived from the ACE and Color/CIELABS using

varying thresholds with the tumor volume generated from the

pathologist’s evaluation of the slides taken from wholemount

prostatectomy. The highest correlation was achieved with 0.65 and

0.35 for ACE and color/CIELABS, respectively, and was therefore

chosen for this study. In practice (31, 32), RX applied to data does

not follow the expected Chi-Square distribution. In practice, ad hoc

or acceptable false alarm rates set the cutoff threshold values.
Results

Thepatientaverage (±standarderror) for theAUCandYI for the

ROC curves for RX for all 26 patients are shown in Tables 1, 2,

respectively. For both calculations, the covariancematrixwas filtered

by eliminating 3 and 4 principal components. This was followed by

applying modified regularization and regularization, as well as

searching for the minimum elliptical volume. In addition, RX was

generated, and ROC curves were computed using an unprocessed

covariance matrix. The best performance in terms of highest AUC

and YI was from the filtered covariance matrix approach and from

applying the regularization to the covariance matrix. Elliptical

volume minimization performed even worse than using an

unprocessed covariance matrix.

Unlike processing using ACE and CIELAB (24), anomaly

detection failed to achieve high correlation with histology-

derived tumor volume or those derived from manual coloring.
Discussion

This is the first spatially registered multi-parametric MRI

study to apply an unsupervised target detection algorithm,
TABLE 2 Youden Index and [Standard Error].

Delete three PC Delete four PC Modified Regularization Regularization Elliptical Envelope Unprocessed

ACE 0.706[0.017] 0.727[0.016] 0.639[0.012] 0.690[0.013] 0.597[0.017] 0.608[0.012]

CIELAB
B 0.711[0.020] 0.708[0.018] 0.648[0.016] 0.695[0.018] 0.605[0.014] 0.615[0.012]

The covariance matrix corrections are denoted as gray. ACE (threshold=0.65, denoted as blue) and CIELAB (threshold 0.35) are the Reference images.
TABLE 1 Average Area Under the Curve (AUC) and [standard error].

Delete three PC Delete four PC Modified Regularization Regularization Elliptical Envelope Unprocessed

ACE 0.734[0.022] 0.727[0.022] 0.638[0.017] 0.716[0.017] 0.544[0.025] 0.581[0.018]

CIELAB
B 0.742[0.025] 0.740[0.022] 0.643[0.023] 0.722[0.022] 0.508[0.024] 0.569[0.020]

The covariance matrix corrections are denoted as gray. ACE (threshold=0.65, denoted as blue) and CIELAB (threshold 0.35) are the Reference images.
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namely the RX algorithm for prostate cancer. The best

performance in terms of highest AUC and YI were the filtered

covariance matrix approach, and from applying regularization to

the covariance matrix. Elliptical volume minimization

performed even worse than using an unprocessed covariance

matrix. The anomaly detection attained high AUC and YI from

ROC when using ACE and CIELAB color images as reference

images. However, unlike supervised target detection, anomaly

detection failed to achieve high correlation with histology

derived tumor volume or those derived from manual coloring.

Imaging is only one way to non-invasively evaluate a patient

for the possible presence of prostate cancer. Recent research (54)

evaluated biomarkers residing in urine or blood (beyond

prostate serum antigen tests) to determine whether a patient

has prostate cancer, its stage, and its potential aggressiveness.

Using metrics derived from imaging does not preclude using

biomarkers. Greater accuracy might be achieved by combining

the new biomarkers with predictors derived from algorithms

applied to spatially registered hypercubes. Each patient can be

individually evaluated by determining the presence of

biomarkers and computing imaging metrics to generate a

patient-specific probability for the presence of prostate cancer

and its likelihood to metastasize and extend beyond the prostate.

It is important to note that the “ reference image” for the

prostate tumors in this ROC curve study for anomaly detection

was taken from ACE and CIELAB images. Tumor delineation

from pathologists ‘ histology images is available but is not a good

reference for this study. The histology images suffer from

distortion and shrinkage during the slicing, staining and

preservation processes and are not subject to stresses from

connections to muscles and other soft tissues as well as

gravity. Using ACE and CIELAB images can also be

problematic due to their unverified connection to pathology

assessed histology slides. However, ACE and CIELAB are

perfectly spatially registered to the RX detection images. The

ACE and CIELAB images also describe classic tumor behavior,

i.e., ones that exhibit low diffusion but high vasculature. Future

investigation is warranted to use “ reference image” masks

generated with multiple signatures for ACE and/or some green

(low vasculature, low diffusion) CIELAB images.

Anomaly detection is sensitive to volumes within the

prostate that do not necessarily display the spectral

characteristics of an archetypal tumor, namely one that shows

low diffusion but high vascularization. Malignant tumors can

show limited vascularization but limited diffusion and, therefore,

can be sufficiently spectrally anomalous to be detected by RX but

not by supervised target detection. However, anomaly detectors

may also detect hyperplasia, or swelling, within the prostate. In

addition, anomaly detection is sensitive to image artifacts such as

misregistration in multi-parametric MRI.

Previous work (27) on Signal to Clutter Ratio and Gleason

score found that the covariance matrix was more optimally

handled by deleting three principal components, not four
Frontiers in Oncology 07
principal components. Earlier work also found that a better-

performing RX used a covariance matrix treated with a modified

regularization procedure, not the more standard regularization

procedure. In contrast, the more optimal covariance matrix for

anomaly detectors was generated by filtering four principal

components, not three. The standard regularization performed

better than the modified regularization for generating a more

optimal covariance matrix and likelihood and a better

performing RX.

The large ROC AUC and large Youden Index relating the RX

to the supervised target algorithm ACE and quantitative

CIELAB coloring scheme suggest a strong relationship

between anomalies and regions sharing typical tumor

characteristics. However, the thresholds associated with the

Youden Index vary considerably and unpredictably from

patient to patient. ROC curves sample all classifier gray levels

or thresholds. However, employ ing RX for tumor volume

determination or prediction requires a single threshold.

Previous studies and the present work find that RX do not

obey expected the chi-squared distribution (31), complicating

efforts to set detection thresholds. Employing RX to reliably

predict tumor volume requires an appropriate threshold.

Further work is needed to identify an appropriate RX

threshold for determining tumor volume.

This study has some limitations. Future work should employ

radiologist-delineated tumors on theMRIas the “ ground truth.”The

threshold parameters for ACE, CIELABS, and ultimately RX should

be checked through cross-validation studies. The patients in this

study were prospectively enrolled but were analyzed retrospectively

from a single institution (NIH). Clinical implementation variations,

therefore, could not be examined, and the effects of variation on this

analysis are uncertain. In addition, as with all retrospective analyses,

the findings herein may be subject to biases. Lastly, the dataset

comprised only 26 patients. Although a limited number of patients

were assessed, consecutive patients were analyzed to minimize

potential bias, and nevertheless highly statistically significant AUC

and YI values were achieved, showing the potential clinical value of

this approach.
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