251 research outputs found
LBT and Spitzer Spectroscopy of Star-Forming Galaxies at 1 < z < 3: Extinction and Star Formation Rate Indicators
We present spectroscopic observations in the rest-frame optical and near- to
mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous
star-forming galaxies at redshift 1 < z < 3 from the LUCIFER instrument on the
Large Binocular Telescope and the Infrared Spectrograph on Spitzer. The sample
was selected to represent pure, actively star-forming systems, absent of active
galactic nuclei. The large lensing magnifications result in high
signal-to-noise spectra that can probe faint IR recombination lines, including
Pa-alpha and Br-alpha at high redshifts. The sample was augmented by three
lensed galaxies with similar suites of unpublished data and observations from
the literature, resulting in the final sample of seven galaxies. We use the IR
recombination lines in conjunction with H-alpha observations to probe the
extinction, Av, of these systems, as well as testing star formation rate (SFR)
indicators against the SFR measured by fitting spectral energy distributions to
far-IR photometry. Our galaxies occupy a range of Av from ~0 to 5.9 mag, larger
than previously known for a similar range of IR luminosities at these
redshifts. Thus, estimates of SFR even at z ~ 2 must take careful count of
extinction in the most IR luminous galaxies. We also measure extinction by
comparing SFR estimates from optical emission lines with those from far-IR
measurements. The comparison of results from these two independent methods
indicates a large variety of dust distribution scenarios at 1 < z < 3. Without
correcting for dust extinction, the H-alpha SFR indicator underestimates the
SFR; the size of the necessary correction depends on the IR luminosity and dust
distribution scenario. Individual SFR estimates based on the 6.2 micron PAH
emission line luminosity do not show a systematic discrepancy with extinction,
although a considerable, ~0.2 dex scatter is observed.Comment: Accepted for publication in The Astrophysical Journal; 14 pages, 8
figure
The Dark Side of ROTSE-III Prompt GRB Observations
We present several cases of optical observations during gamma-ray bursts
(GRBs) which resulted in prompt limits but no detection of optical emission.
These limits constrain the prompt optical flux densities and the optical
brightness relative to the gamma-ray emission. The derived constraints fall
within the range of properties observed in GRBs with prompt optical detections,
though at the faint end of optical/gamma flux ratios. The presently accessible
prompt optical limits do not require a different set of intrinsic or
environmental GRB properties, relative to the events with prompt optical
detections.Comment: ApJ accepted. 20 pages in draft manuscript form, which includes 6
pages of tables and 2 figure
SXDF-UDS-CANDELS-ALMA 1.5 arcmin deep survey
We have conducted 1.1 mm ALMA observations of a contiguous or 1.5 arcmin window in the SXDF-UDS-CANDELS. We achieved a 5
sensitivity of 0.28 mJy, providing a flat sensus of dusty star-forming galaxies
with (for =40K) up to
thanks to the negative K-correction at this wavelength. We detected 5
brightest sources (S/N6) and 18 low-significance sources (5S/N4; these
may contain spurious detections, though). One of the 5 brightest ALMA sources
( mJy) is extremely faint in the WFC3 and
VLT/HAWK-I images, demonstrating that a contiguous ALMA imaging survey is able
to uncover a faint dust-obscured population that is invisible in deep
optical/near-infrared surveys. We found a possible [CII]-line emitter at
or a low- CO emitting galaxy within the field, which may allow us
to constrain the [CII] and/or the CO luminosity functions across the history of
the universe.Comment: 4 pages, 2 figures, 1 table, to appear in the proceedings of IAU
Symposium 319 "Galaxies at High Redshift and Their Evolution over Cosmic
Time", eds. S. Kaviraj & H. Ferguso
Spatially resolved kinematics in the central 1 kpc of a compact star-forming galaxy at z=2.3 from ALMA CO observations
We present high spatial resolution (FWHM0.14'') observations of the
CO() line in GDS-14876, a compact star-forming galaxy at with
total stellar mass of . The spatially resolved
velocity map of the inner ~kpc reveals a continous velocity
gradient consistent with the kinematics of a rotating disk with km s and . The
gas-to-stellar ratios estimated from CO() and the dust continuum emission
span a broad range, and
, but are nonetheless consistent given the
uncertainties in the conversion factors. The dynamical modeling yields a
dynamical mass of which is
lower, but still consistent with the baryonic mass, (M=
M + M/M), if the smallest
CO-based gas fraction is assumed. Despite a low, overall gas fraction, the
small physical extent of the dense, star-forming gas probed by CO(),
smaller than the stellar size, implies a strong concentration
that increases the gas fraction up to
in the central 1 kpc. Such a gas-rich center, coupled with a high
star-formation rate, SFR 500 M yr, suggests that
GDS-14876 is quickly assembling a dense stellar component (bulge) in a strong
nuclear starburst. Assuming its gas reservoir is depleted without
replenishment, GDS-14876 will quickly ( Myr) become a
compact quiescent galaxy that could retain some fraction of the observed
rotational support.Comment: Accepted for Publication in ApJL. Kinematic maps are shown in Figures
2 and
Prompt Optical Detection of GRB 050401 with ROTSE-IIIa
The ROTSE-IIIa telescope at Siding Spring Observatory, Australia, detected
prompt optical emission from Swift GRB 050401. In this letter, we present
observations of the early optical afterglow, first detected by the ROTSE-IIIa
telescope 33 s after the start of gamma-ray emission, contemporaneous with the
brightest peak of this emission. This GRB was neither exceptionally long nor
bright. This is the first prompt optical detection of a GRB of typical duration
and luminosity. We find that the early afterglow decay does not deviate
significantly from the power-law decay observable at later times, and is
uncorrelated with the prompt gamma-ray emission. We compare this detection with
the other two GRBs with prompt observations, GRB 990123 and GRB 041219a. All
three bursts exhibit quite different behavior at early times.Comment: 4 pages, 3 figures. Accepted for publication in ApJ Letter
SXDF-ALMA 2 Arcmin^2 Deep Survey: Resolving and Characterizing the Infrared Extragalactic Background Light Down to 0.5 mJy
We present a multi-wavelength analysis of five submillimeter sources (S_1.1mm
= 0.54-2.02 mJy) that were detected during our 1.1-mm-deep continuum survey in
the SXDF-UDS-CANDELS field (2 arcmin^2, 1sigma = 0.055 mJy beam^-1) using the
Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources
correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy
(SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If
we exclude the two brightest sources, the contribution of the ALMA-detected
faint SMGs to the infrared extragalactic background light is estimated to be ~
4.1^{+5.4}_{-3.0} Jy deg^{-2}, which corresponds to ~ 16^{+22}_{-12}% of the
infrared extragalactic background light. This suggests that their contribution
to the infrared extragalactic background light is as large as that of bright
SMGs. We identified multi-wavelength counterparts of the five ALMA sources. One
of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared
region despite its infrared luminosity (L_IR ~ 1e12 L_sun or SFR ~ 100 M_sun
yr^{-1}). By fitting the spectral energy distributions (SEDs) at the
optical-to-near-infrared wavelengths of the remaining four ALMA sources, we
obtained the photometric redshifts (z_photo) and stellar masses (M_*): z_photo
~ 1.3-2.5, M_* ~ (3.5-9.5)e10 M_sun. We also derived their star formation rates
(SFRs) and specific SFRs (sSFRs) as ~ 30-200 M_sun yr^{-1} and ~ 0.8-2
Gyr^{-1}, respectively. These values imply that they are main-sequence
star-forming galaxies.Comment: PASJ accepted, 15 pages, 6 figures, 2 table
SXDF-ALMA 1.5 arcmin^2 deep survey. A compact dusty star-forming galaxy at z=2.5
We present first results from the SXDF-ALMA 1.5 arcmin^2 deep survey at 1.1
mm using Atacama Large Millimeter Array (ALMA). The map reaches a 1sigma depth
of 55 uJy/beam and covers 12 Halpha-selected star-forming galaxies at z = 2.19
or z=2.53. We have detected continuum emission from three of our
Halpha-selected sample, including one compact star-forming galaxy with high
stellar surface density, NB2315-07. They are all red in the rest-frame optical
and have stellar masses of log (M*/Msun)>10.9 whereas the other blue,
main-sequence galaxies with log(M*/Msun)=10.0-10.8 are exceedingly faint, <290
uJy (2sigma upper limit). We also find the 1.1 mm-brightest galaxy, NB2315-02,
to be associated with a compact (R_e=0.7+-0.1 kpc), dusty star-forming
component. Given high gas fraction (44^{+20}_{-8}% or 37^{+25}_{-3}%) and high
star formation rate surface density (126^{+27}_{-30} Msun yr^{-1}kpc^{-2}), the
concentrated starburst can within less than 50^{+12}_{-11} Myr build up a
stellar surface density matching that of massive compact galaxies at z~2,
provided at least 19+-3% of the total gas is converted into stars in the galaxy
centre. On the other hand, NB2315-07, which already has such a high stellar
surface density core, shows a gas fraction (23+-8%) and is located in the lower
envelope of the star formation main-sequence. This compact less star-forming
galaxy is likely to be in an intermediate phase between compact dusty
star-forming and quiescent galaxies.Comment: 6 pages, 4 figures, 1 table, accepted for publication in ApJ
Large Binocular Telescope and Sptizer Spectroscopy of Star-forming Galaxies at 1 < z < 3: Extinction and Star Formation Rate Indicators
We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 < z < 3 from the LUCIFER instrument on the Large Binocular Telescope and the Infrared Spectrograph on Spitzer. The sample was selected to represent pure, actively star-forming systems, absent of active galactic nuclei. The large lensing magnifications result in high signal-to-noise spectra that can probe faint IR recombination lines, including Pa and Br at high redshifts. The sample was augmented by three lensed galaxies with similar suites of unpublished data and observations from the literature, resulting in the final sample of seven galaxies. We use the IR recombination lines in conjunction with H observations to probe the extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from 0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z 2 must take careful count of extinction in the most IR luminous galaxies.We also measure extinction by comparing SFR estimates from optical emission lines with those from far- IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 < z < 3. Without correcting for dust extinction, the H SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2m polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, 0.2 dex, scatter is observed
A molecular line scan in the Hubble Deep Field North
We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z2. We reach a CO detection limit that is deep enough to detect essentially all z>1 CO lines reported in the literature so far. We have developed and applied different line searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ~2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available SEDs. Two secure CO detections in our scan are identified with star-forming galaxies at z=1.784 and at z=2.047. These galaxies have colors consistent with the `BzK' color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF850.1 at z=5.183. We consider an additional 9 line candidates as high quality. Our observations also provide a deep 3mm continuum map (1-sigma noise level = 8.6 μJy/beam). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the SFR density at 1<z<3, unless high dust temperatures are invoked. The present study represents a first, fundamental step towards an unbiased census of molecular gas in `normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era
Status of the ROTSE-III telescope network
ROTSE-III is a homogeneous worldwide array of 4 robotic telescopes. They were designed to provide optical observations of γ-ray burst (GRB) afterglows as close as possible to the start of γ-ray emission. ROTSE-III is fulfilling its potential for GRB science, and provides optical observations for a variety of astrophysical sources in the interim between GRB events
- …
