42,605 research outputs found

    Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate

    Get PDF
    Long pulse or steady state operation of fusion experiments require data acquisition and processing systems that reduce the volume of data involved. The availability of self-adaptive sampling rate systems and the use of real-time lossless data compression techniques can help solve these problems. The former is important for continuous adaptation of sampling frequency for experimental requirements. The latter allows the maintenance of continuous digitization under limited memory conditions. This can be achieved by permanent transmission of compressed data to other systems. The compacted transfer ensures the use of minimum bandwidth. This paper presents an implementation based on intelligent test and measurement system (ITMS), a data acquisition system architecture with multiprocessing capabilities that permits it to adapt the system’s sampling frequency throughout the experiment. The sampling rate can be controlled depending on the experiment’s specific requirements by using an external dc voltage signal or by defining user events through software. The system takes advantage of the high processing capabilities of the ITMS platform to implement a data reduction mechanism based in lossless data compression algorithms which are themselves based in periodic deltas

    Sterile neutrino decay and the LSND experiment

    Full text link
    We propose a new explanation of the intriguing LSND evidence for electron antineutrino appearance in terms of heavy (mostly sterile) neutrino decay via a coupling with a light scalar and light (mostly active) neutrinos. We perform a fit to the LSND data, as well as all relevant null-result experiments, taking into account the distortion of the spectrum due to decay. By requiring a coupling g ~ 10^{-5}, a heavy neutrino mass m_4 ~ 100 keV and a mixing with muon neutrinos |U_{mu 4}|^2 ~ 10^{-2}, we show that this model explains all existing data evading constraints that disfavor standard (3+1) neutrino models.Comment: 3pp. Talk given at 9th International Conference on Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Spain, 10-14 Sep 200

    Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques

    Get PDF
    Background: Tomato brown rugose fruit virus (ToBRFV) is a highly infectious tobamovirus that causes severe disease in tomato (Solanum lycopersicum L.) crops. In Italy, the first ToBRFV outbreak occurred in 2018 in several provinces of the Sicily region. ToBRFV outbreak represents a serious threat for tomato crops in Italy and the Mediterranean Basin. Methods: Molecular and biological characterisation of the Sicilian ToBRFV ToB-SIC01/19 isolate was performed, and a sensitive and specific Real-time RT-PCR TaqMan minor groove binder probe method was developed to detect ToBRFV in infected plants and seeds. Moreover, four different sample preparation procedures (immunocapture, total RNA extraction, direct crude extract and leaf-disk crude extract) were evaluated. Results: The Sicilian isolate ToB-SIC01/19 (6,391 nt) showed a strong sequence identity with the isolates TBRFV-P12-3H and TBRFV-P12-3G from Germany, Tom1-Jo from Jordan and TBRFV-IL from Israel. The ToB-SIC01/19 isolate was successfully transmitted by mechanical inoculations in S. lycopersicum L. and Capsicum annuum L., but no transmission occurred in S. melongena L. The developed real-time RT-PCR, based on the use of a primer set designed on conserved sequences in the open reading frames3, enabled a reliable quantitative detection. This method allowed clear discrimination of ToBRFV from other viruses belonging to the genus Tobamovirus, minimising false-negative results. Using immunocapture and total RNA extraction procedures, the real-time RT-PCR and end-point RT-PCR gave the same comparable results. Using direct crude extracts and leaf-disk crude extracts, the end-point RT-PCR was unable to provide a reliable result. This developed highly specific and sensitive real-time RT-PCR assay will be a particularly valuable tool for early ToBRFV diagnosis, optimising procedures in terms of costs and time

    Nesting Success of Kemp’s Ridley Sea Turtles, Lepidochelys kempi, at Rancho Nuevo, Tamaulipas, Mexico, 1982–2004

    Get PDF
    The Kemp’s ridley sea turtle, Lepidochelys kempi, was on the edge of extinction owing to a combination of intense egg harvesting and incidental capture in commercial fishing trawls. Results from a cooperative conservation strategy initiated in 1978 between Mexico and the United States to protect and restore the Kemp’s ridley turtle at the main nesting beach at Rancho Nuevo, Tamaulipas, Mexico are assessed. This strategy appears to be working as there are signs that the species is starting to make a recovery. Recovery indicators include: 1) increased numbers of nesting turtles, 2) increased numbers of 100+ turtle nesting aggregations (arribadas), 3) an expanding nesting season now extending from March to August, and 4) significant nighttime nesting since 2003. The population low point at Rancho Nuevo was in 1985 (706 nests) and the population began to significantly increase in 1997 (1,514 nests), growing to over 4,000 nests in 2004. The size and numbers of arribadas have increased each year since 1983 but have yet to exceed the 1,000+ mark; most arribadas are still 200–800+ turtles

    Vanishing chiral couplings in the large-N_C resonance theory

    Get PDF
    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-Nc chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/Nc expansion.Comment: 5 pages, 2 figures. Version published in Physical Review D. Some equations to facilitate the discussion have been adde

    Bond diluted Levy spin-glass model and a new finite size scaling method to determine a phase transition

    Full text link
    A spin-glass transition occurs both in and out of the limit of validity of mean-field theory on a diluted one dimensional chain of Ising spins where exchange bonds occur with a probability decaying as the inverse power of the distance. Varying the power in this long-range model corresponds, in a one-to-one relationship, to change the dimension in spin-glass short-range models. Using different finite size scaling methods evidence for a spin-glass transition is found also for systems whose equivalent dimension is below the upper critical dimension at zero magnetic field. The application of a new method is discussed, that can be exported to systems in a magnetic field.Comment: 8 pages, 8 figures, 1 tabl

    An obscured AGN population hidden in the VIPERS galaxies: identification through spectral energy distribution decomposition

    Full text link
    The detection of X-ray emission constitutes a reliable and efficient tool for the selection of Active Galactic Nuclei (AGNs), although it may be biased against the most heavily absorbed AGNs. Simple mid-IR broad-band selection criteria identify a large number of luminous and absorbed AGNs, yet again host contamination could lead to non-uniform and incomplete samples. Spectral Energy Distribution (SED) decomposition is able to decouple the emission from the AGN versus that from star-forming regions, revealing weaker AGN components. We aim to identify the obscured AGN population in the VIPERS survey in the CFHTLS W1 field through SED modelling. We construct SEDs for 6,860 sources and identify 160 AGNs at a high confidence level using a Bayesian approach. Using optical spectroscopy, we confirm the nature of ~85% of the AGNs. Our AGN sample is highly complete (~92%) compared to mid-IR colour selected AGNs, including a significant number of galaxy-dominated systems with lower luminosities. In addition to the lack of X-ray emission (80%), the SED fitting results suggest that the majority of the sources are obscured. We use a number of diagnostic criteria in the optical, infrared and X-ray regime to verify these results. Interestingly, only 35% of the most luminous mid-IR selected AGNs have X-ray counterparts suggesting strong absorption. Our work emphasizes the importance of using SED decomposition techniques to select a population of type II AGNs, which may remain undetected by either X-ray or IR colour surveys.Comment: Accepted for publication in MNRAS in May 4, 2020. 18 figures, 3 tables

    A versatile trigger and synchronization module with IEEE1588 capabilities and EPICS support.

    Get PDF
    Event timing and synchronization are two key aspects to improve in the implementation of distributed data acquisition (dDAQ) systems such as the ones used in fusion experiments. It is also of great importance the integration of dDAQ in control and measurement networks. This paper analyzes the applicability of the IEEE1588 and EPICS standards to solve these problems, and presents a hardware module implementation based in both of them that allow adding these functionalities to any DAQ. The IEEE1588 standard facilitates the integration of event timing and synchronization mechanisms in distributed data acquisition systems based on IEEE 803.3 (Ethernet). An optimal implementation of such system requires the use of network interface devices which include specific hardware resources devoted to the IEE1588 functionalities. Unfortunately, this is not the approach followed in most of the large number of applications available nowadays. Therefore, most solutions are based in software and use standard hardware network interfaces. This paper presents the development of a hardware module (GI2E) with IEEE1588 capabilities which includes USB, RS232, RS485 and CAN interfaces. This permits to integrate any DAQ element that uses these interfaces in dDAQ systems in an efficient and simple way. The module has been developed with Motorola's Coldfire MCF5234 processor and National Semiconductors's PHY DP83640T, providing it with the possibility to implement the PTP protocol of IEEE1588 by hardware, and therefore increasing its performance over other implementations based in software. To facilitate the integration of the dDAQ system in control and measurement networks the module includes a basic Input/Output Controller (IOC) functionality of the Experimental Physics and Industrial Control System (EPICS) architecture. The paper discusses the implementation details of this module and presents its applications in advanced dDAQ applications in the fusion community
    corecore