3 research outputs found

    Recovering the genomes hidden in museum wet collections

    Get PDF
    Natural history museums hold vast collections of biomaterials. The collections in museums, often painstakingly sampled, are largely unexplored treasures that may help us better understand biodiversity on the planet. Museum collections can provide a unique window into the past of species long gone or currently declining due to human activity. From a molecular perspective, however, many museum samples are stored under conditions that hasten the damage of DNA, RNA and proteins. For example, samples in wet collections are those stored in liquid preservatives, typically ethanol. These ethanol-preserved tissues are often, although not always, formalin-fixed prior to storage, which may damage DNA. In this and recent issues of Molecular Ecology Resources, Straube et al (2021), O'Connell et al (2021) and Hahn et al (2022) explore different types of specimens from museum wet collections as new sources of DNA for scientific studies. All three articles found that for wet museum collections, overall specimen condition mattered most for recovering high-quality genomic DNA

    Ancient DNA of the pygmy marmoset type specimen Cebuella pygmaea (Spix, 1823) resolves a taxonomic conundrum

    Get PDF
    The pygmy marmoset, the smallest of the anthropoid primates, has a broad distribution in Western Amazonia. Recent studies using molecular and morphological data have identified two distinct species separated by the Napo and Solimões-Amazonas rivers. However, reconciling this new biological evidence with current taxonomy, i.e., two subspecies, Cebuella pygmaea pygmaea (Spix, 1823) and Cebuella pygmaea niveiventris (Lönnberg, 1940), was problematic given the uncertainty as to whether Spix's pygmy marmoset (Cebuella pygmaea pygmaea) was collected north or south of the Napo and Solimões-Amazonas rivers, making it unclear to which of the two newly revealed species the name pygmaea would apply. Here, we present the first molecular data from Spix's type specimen of Cebuella pygmaea, as well as novel mitochondrial genomes from modern pygmy marmosets sampled near the type locality (Tabatinga) on both sides of the river. With these data, we can confirm the correct names of the two species identified, i.e., C. pygmaea for animals north of the Napo and Solimões-Amazonas rivers and C. niveiventris for animals south of these two rivers. Phylogenetic analyses of the novel genetic data placed into the context of cytochrome b gene sequences from across the range of pygmy marmosets further led us to reevaluate the geographical distribution for the two Cebuella species. We dated the split of these two species to 2.54 million years ago. We discuss additional, more recent, subdivisions within each lineage, as well as potential contact zones between the two species in the headwaters of these rivers

    Recovering the genomes hidden in museum wet collections

    No full text
    Data de publicació electrònica: 16-05-2022Natural history museums hold vast collections of biomaterials. The collections in museums, often painstakingly sampled, are largely unexplored treasures that may help us better understand biodiversity on the planet. Museum collections can provide a unique window into the past of species long gone or currently declining due to human activity. From a molecular perspective, however, many museum samples are stored under conditions that hasten the damage of DNA, RNA and proteins. For example, samples in wet collections are those stored in liquid preservatives, typically ethanol. These ethanol-preserved tissues are often, although not always, formalin-fixed prior to storage, which may damage DNA. In this and recent issues of Molecular Ecology Resources, Straube et al (2021), O'Connell et al (2021) and Hahn et al (2022) explore different types of specimens from museum wet collections as new sources of DNA for scientific studies. All three articles found that for wet museum collections, overall specimen condition mattered most for recovering high-quality genomic DNA
    corecore