63 research outputs found

    A validated finite element analysis procedure for porous structures

    Get PDF
    Cellular materials are gaining interest thanks to developments in additive manufacturing. Whilst Finite Element Analysis (FEA) is commonly used to obtain the mechanical behaviour of these structures, different modelling and simulation methodologies are followed in literature. Consequently, there is not a clear procedure to accurately evaluate the mechanical properties of porous structures. This study presents a method to perform FEA of lattice structures with accurate results. All inputs required to simulate compression testing of lattices in FEA were investigated, these included the modelling type, element size, number of unit cells required, boundary conditions and the material model. The effect of these variables on the modulus and yield strength of a lattice structure was studied. Lattices with two unit cell structures, varying unit cell sizes and relative densities were additively manufactured in stainless steel, compression tested and compared to FE simulations. The material model for the FE simulations was obtained from tensile testing individual micro-struts of varying diameters. FE simulation results were in good agreement with the experimental results with an average error for the modulus and yield strength of ~10% and 17% respectively. The methodology presented should provide a foundation to accelerate development and adoption of these structures

    Analytical model for the prediction of permeability of triply periodic minimal surfaces

    Get PDF
    Triply periodic minimal surfaces (TPMS) are mathematically defined cellular structures whose geometry can be quickly adapted to target desired mechanical response (structural and fluid). This has made them desirable for a wide range of bioengineering applications; especially as bioinspired materials for bone replacement. The main objective of this study was to develop a novel analytical framework which would enable calculating permeability of TPMS structures based on the desired architecture, pore size and porosity. To achieve this, computer-aided designs of three TPMS structures (Fisher-Koch S, Gyroid and Schwarz P) were generated with varying cell size and porosity levels. Computational Fluid Dynamics (CFD) was used to calculate permeability for all models under laminar flow conditions. Permeability values were then used to fit an analytical model dependent on geometry parameters only. Results showed that permeability of the three architectures increased with porosity at different rates, highlighting the importance of pore distribution and architecture. The computed values of permeability fitted well with the suggested analytical model (R2>0.99, p<0.001). In conclusion, the novel analytical framework presented in the current study enables predicting permeability values of TPMS structures based on geometrical parameters within a difference <5%. This model, which could be combined with existing structural analytical models, could open new possibilities for the smart optimisation of TPMS structures for biomedical applications where structural and fluid flow properties need to be optimised

    Infrared Phase-Change Meta-Devices with In-Situ Switching

    Get PDF
    This is the author accepted manuscript. The final version is available from the European Phase Change and Ovonics Symposium via the link in this recordWe describe a possible device design approach and an experimental test platform suitable for the realization and characterization of phase-change based meta-devices incorporating in-situ switching and operating at infrared wavelengths. Measurements on such a prototype device working at 1.55 ”m are presented.US Naval Research LaboratoriesEngineering and Physical Sciences Research Council (EPSRC

    Laser powder bed fusion of porous graded structures: a comparison between computational and experimental analysis

    Get PDF
    Functionally graded porous structures (FGPSs) are gaining interest in the biomedical sector, specifically for orthopaedic implants. In this study, the compressive behaviour of seven different FGPSs comprised of Face Centred Cubic (FCC) and the Octet truss unit cells (OCT) were analysed. The porosity of the structures were graded in different directions (radially, longitudinally, laterally and longitudinally & radially) by varying the strut diameters or by combining the two types of unit cells. The structures were manufactured by laser power bed fusion and compression tests were performed. Radially and laterally porous graded structures were found to outperform uniform porous structures with an increase in stiffness of 13.7% and 21.1% respectively. The experimental and finite element analysis (FEA) results were in good agreement with differences in elastic modulus of 9.4% and yield strength of 15.8%. A new FEA beam model is proposed in this study to analyse this type of structures with accurate results and the consequent reduction of computational time. The accuracy of the Kelvin-Voight model and the rule of mixtures for predicting the mechanical behaviour of different FGPSs was also investigated. The results demonstrate the adequacy of the analytical models specifically for hybrid structures and for structures with smooth diameter transitions

    In silico assessment of the bone regeneration potential of complex porous scaffolds.

    Get PDF
    Mechanical environment plays a crucial role in regulating bone regeneration in bone defects. Assessing the mechanobiological behavior of patient-specific orthopedic scaffolds in-silico could help guide optimal scaffold designs, as well as intra- and post-operative strategies to enhance bone regeneration and improve implant longevity. Additively manufactured porous scaffolds, and specifically triply periodic minimal surfaces (TPMS), have shown promising structural properties to act as bone substitutes, yet their ability to induce mechanobiologially-driven bone regeneration has not been elucidated. The aim of this study is to i) explore the bone regeneration potential of TPMS scaffolds made of different stiffness biocompatible materials, to ii) analyze the influence of pre-seeding the scaffolds and increasing the post-operative resting period, and to iii) assess the influence of patient-specific parameters, such as age and mechanosensitivity, on outcomes. To perform this study, an in silico model of a goat tibia is used. The bone ingrowth within the scaffold pores was simulated with a mechano-driven model of bone regeneration. Results showed that the scaffold's architectural properties affect cellular diffusion and strain distribution, resulting in variations in the regenerated bone volume and distribution. The softer material improved the bone ingrowth. An initial resting period improved the bone ingrowth but not enough to reach the scaffold's core. However, this was achieved with the implantation of a pre-seeded scaffold. Physiological parameters like age and health of the patient also influence the bone regeneration outcome, though to a lesser extent than the scaffold design. This analysis demonstrates the importance of the scaffold's geometry and its material, and highlights the potential of using mechanobiological patient-specific models in the design process for bone substitutes

    Additively manufactured lattice structures with controlled transverse isotropy for orthopedic porous implants

    Get PDF
    Additively manufactured lattice structures enable the design of tissue scaffolds with tailored mechanical properties, which can be implemented in porous biomaterials. The adaptation of bone to physiological loads results in anisotropic bone tissue properties which are optimized for site-specific loads; therefore, some bone sites are stiffer and stronger along the principal load direction compared to other orientations. In this work, a semi-analytical model was developed for the design of transversely isotropic lattice structures that can mimic the anisotropy characteristics of different types of bone tissue. Several design possibilities were explored, and a particular unit cell, which was best suited for additive manufacturing was further analyzed. The design of the unit cell was parameterized and in-silico analysis was performed via Finite Element Analysis. The structures were manufactured additively in metal and tested under compressive loads in different orientations. Finite element analysis showed good correlation with the semi-analytical model, especially for elastic constants with low relative densities. The anisotropy measured experimentally showed a variable accuracy, highlighting the deviations from designs to additively manufactured parts. Overall, the proposed model enables to exploit the anisotropy of lattice structures to design lighter scaffolds with higher porosity and increased permeability by aligning the scaffold with the principal direction of the load

    Understanding elastic anisotropy in diamond based lattice structures produced by laser powder bed fusion: Effect of manufacturing deviations

    Get PDF
    Laser powder bed fusion (L-PBF) allows the production of metal lattice cellular structures with tailored mechanical properties. In order to generate the specific structural behavior it is of utmost importance to understand the response of the unit cells when different load conditions are considered. In this article the mechanical response of diamond based cellular structures has been investigated focusing on the impact of geometrical inaccuracy generated by the manufacturing process on the elastic anisotropy of the mentioned unit cell. The Ό-CT analysis of the structures shows that the manufacturing deviations occur in certain orientations that depend highly on the building direction and proximity to nodes. The measured imperfection types were implemented in a finite element model in order to predict their single and combined effects in the elastic directional response. The results indicate that the L-PBF process can induce a significant change of elastic anisotropy in the diamond unit cells, including a substantial variation of the optimal orientation for minimal compliance. Methods are presented to calculate this anisotropy such that it can be taken into account when designing and using such lattice structures in real-life applications with multi-axial load condition

    Meeting high precision requirements of additively manufactured components through hybrid manufacturing

    Get PDF
    A hybrid approach combining the laser powder bed fusion (LPBF) process and post-processing operations through 5-axis milling was employed to manufacture a Ti6Al4V aerospace component. From the design step, the requirements and needs in all the stages of the Hybrid Additive Manufacturing process were taken into account. A numerical simulation of distortions promoted by residual stresses during the additive process was employed to consider material allowance. The status of the as-built and post-processed component was analysed through scanning and CMM inspection and roughness measurements. The 3D scanned model of the as-built LPBF-ed component was used to understand the distortion behaviour of the component and compared to the numerical simulation. Finally, 5-axis milling operations were conducted in some critical surfaces in order to improve surface quality and dimensional accuracy of the as-built com- ponent. The inspection of the as-built and post-processed component showed the improvement achieved through the proposed hybrid approach. The work aims to provide the baselines needed to enable the metal Hybrid Additive Manufacturing of components with complex geometries where mandatory precision is required by integrating high accuracy machining operations as post-processing technique

    Plasmonically-enhanced all-optical integrated phase-change memory

    Get PDF
    This is the final version. Available on open access from the Optical Society of America via the DOI in this record.Integrated phase-change photonic memory devices offer a novel route to non-volatile storage and computing that can be carried out entirely in the optical domain, obviating the necessity for time and energy consuming opto-electrical conversions. Such memory devices generally consist of integrated waveguide structures onto which are fabricated small phase-change memory cells. Switching these cells between their amorphous and crystalline states modifies significantly the optical transmission through the waveguide, so providing memory, and computing, functionality. To carry out such switching, optical pulses are sent down the waveguide, coupling to the phase-change cell, heating it up, and so switching it between states. While great strides have been made in the development of integrated phase-change photonic devices in recent years, there is always a pressing need for faster switching times, lower energy consumption and a smaller device footprint. In this work, therefore, we propose the use of plasmonic enhancement of the light-matter interaction between the propagating waveguide mode and the phase-change cell as a means to faster, smaller and more energy-efficient devices. In particular, we propose a form of plasmonic dimer nanoantenna of significantly sub-micron size that, in simulations, offers significant improvements in switching speeds and energies. Write/erase speeds in the range 2 to 20 ns and write/erase energies in the range 2 to 15 pJ were predicted, representing improvements of one to two orders of magnitude when compared to conventional device architectures.Engineering and Physical Sciences Research Council (EPSRC

    Phase-change meta-photonics

    Get PDF
    We combine phase-change materials and metamaterial arrays (metasurfaces) to create new forms of dynamic, tuneable and reconfigurable photonic devices including ‘perfect’ absorbers, infra-red light modulators, optical beam steerers and enhanced phase-change optoelectronic displays
    • 

    corecore