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A B S T R A C T   

Functionally graded porous structures (FGPSs) are gaining interest in the biomedical sector, specifically for 
orthopaedic implants. In this study, the compressive behaviour of seven different FGPSs comprised of Face 
Centred Cubic (FCC) and the Octet truss unit cells (OCT) were analysed. The porosity of the structures were 
graded in different directions (radially, longitudinally, laterally and longitudinally & radially) by varying the 
strut diameters or by combining the two types of unit cells. The structures were manufactured by laser power bed 
fusion and compression tests were performed. Radially and laterally porous graded structures were found to 
outperform uniform porous structures with an increase in stiffness of 13.7% and 21.1% respectively. The 
experimental and finite element analysis (FEA) results were in good agreement with differences in elastic 
modulus of 9.4% and yield strength of 15.8%. A new FEA beam model is proposed in this study to analyse this 
type of structures with accurate results and the consequent reduction of computational time. The accuracy of the 
Kelvin-Voight model and the rule of mixtures for predicting the mechanical behaviour of different FGPSs was 
also investigated. The results demonstrate the adequacy of the analytical models specifically for hybrid structures 
and for structures with smooth diameter transitions.   

1. Introduction 

Developments in Additive Manufacturing (AM) have led to an 
increased interest in structures that cannot be conventionally machined, 
such as lattice structures. Lattice structures also known as cellular or 
porous structures are a type of material comprised of a stochastic 
(random) or periodic framework of beams (struts). These structures can 
also consist of struts or surfaces represented by mathematical equations, 
e.g. triply periodic minimal surfaces (TPMS). The mechanical properties 
of these structures are governed by the parent material, the architecture 
of the unit cell/structure and the size and porosity of the unit cell/ 
structure. The properties of these lightweight structures make them 
ideal for scaffolds (Blázquez-Carmona et al., 2021) and medical implants 
such as hip (Jetté et al., 2018) or dental implants (Wally et al., 2019). 

In addition to uniform or periodic unit cell lattice structures, which 
are commonly studied in the literature (Hedayati et al., 2016; Herrera 
et al., 2014), functionally porous graded structures (FPGSs) are of great 
interest. These structures which gradually change the porosity and/or 
stiffness or strength throughout the component may improve bone 

ingrowth and implant fixation (Ghouse et al., 2019; Han et al., 2018). A 
common way to design FGPSs is to gradually increase or decrease the 
strut diameter (for strut-based lattice structures) (Limmahakhun et al., 
2017a; Maskery et al., 2016; Mahbod and Asgari, 2019) or the surface 
thickness (for TPMS) (Zhou et al., 2020; Zhao et al., 2020; Yang et al., 
2019). Scaling the unit cell size in specific directions is also used to vary 
the porosity of these structures (Al-Ketan et al., 2020; Liu et al., 2018a), 
however this method offers limited variation. Alternatively the porosity 
of the structures can be varied by combining different types of unit cells 
(Al-Ketan et al., 2020; Maskery et al., 2018). However, depending on the 
type of unit cells a mismatch of struts can occur at unit cell boundaries 
and therefore the range of unit cells that could be used for this hybrid
ization is also limited. 

The quasi-static behaviour of radially graded porous structures 
(Xiong et al., 2020; Limmahakhun et al., 2017b; Montazerian et al., 
2019; Zhang et al., 2019), axially graded porous structures (Mahbod and 
Asgari, 2019; Zhao et al., 2020; Maskery et al., 2018; Wang et al., 2019; 
Liu et al., 2018b) and laterally graded porous structures (Yang et al., 
2019) has previously been reported. To predict the behaviour of the 
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metal FGPSs, some studies use finite element analysis (FEA), with 
structures being modelled in different ways. Zhang et al. (2019) studied 
diamond strut-based FGPS by analysing a representative volume 
element (RVE) and incorporating manufacturing geometric imperfec
tions. With the defect-couple RVE model, they found very low differ
ences (~2%) between the FEA results and the experiments for radially 
porous graded structures. Yang et al. (2019) analysed FGPSs (axially and 
laterally graded porous structures) made by gyroid TPMS assuming no 
geometric and material imperfections inherent to the manufacturing 
process. They found that the porosity gradient perpendicular to the di
rection of loading, increases the Young’s modulus and yield strength of 
the cellular structures. However, these values were not compared be
tween FEA and experiments. Working with polymers, Mahbod and 
Asgari (2019) modelled FGPSs (axially graded) made by double pyramid 
dodecahedron unit cells with Timoshenko beam elements and developed 
an analytical model. The errors with the experiments were relatively low 
(~10%). Bai et al. (2020) analysed the energy absorption and me
chanical properties of porous graded nylon structures, in this study the 
density of the structures was varied by altering the unit cell height. Some 
studies also use the Kelvin-Voight-model and the rule of mixtures to 
analytically predict the elastic modulus and yield strength of axially 
(Maskery et al., 2018), radially and laterally (Yang et al., 2019; Zhang 
et al., 2019) graded porous structures. Usually the difference between 
these models and FEA is greater for axially porous graded structures 
where the Kelvin-Voight-model is used and the difference ranges from 
3% to 20% (Maskery et al., 2018). For radially and laterally graded 
porous structures the error is lower and ranges from 1% to 12% (Yang 
et al., 2019; Zhang et al., 2019). 

The main purpose of this work is to propose and to verify numerical 
procedures that can accurately model any FGPS structure independently 
of the grading direction. It should be noted that most of the studies in the 
literature employing FEA to model FGPSs use the explicit solver in the 
numerical simulations in order to account for the big deformations and 
the contact between struts. The advantage of this procedure is that the 
energy absorption of the structures can be numerically predicted. 
However, as shown in the literature, in general, this procedure is not so 
accurate when analysing the elastic properties of FGPSs (elastic modulus 
and yield strength). Considering that in many applications the FGPSs 
will work in the elastic region, it is necessary to define a numerical 
procedure that can represent them accurately. To this end, in this work 
the yield strength and elastic modulus of different FGPSs are numeri
cally analysed and compared to the experiments. The structures ana
lysed in this work are formed by the modified Faced-Centred-Cubic 
(FCC) and Octet truss (OCT) unit cells. In order to check the validity of 
these procedures for different FGPSs, the porosity was graded in 
different directions: radially, axially, laterally and mixed (axially & 
radially), by varying the strut diameters and by combining the two types 
of unit cells. The first step was to analyse the adequacy of analytical 
models (Kelvin-Voight model and the rule of mixtures) analysing 46 
different porous graded structures and comparing the analytical results 
with the FEA results. Then, seven different type of FGPSs were designed, 
manufactured and compression tested to obtain the mechanical prop
erties. These structures were also computationally analysed by the 
procedure described by Ruiz de Galarreta et al. (Ruiz de Galarreta et al., 
2020), by a new FEA procedure using beam elements and by analytical 
models. 

2. Materials and methods 

In section 2.1 the design of the seven different porous-graded 
structures that will be experimentally and numerically analysed is 
described. Section 2.2 describes the analytical models defining the 
behaviour of FGPSs. To check the adequacy of these models for different 
FGPSs, 46 structures with different strut diameters, porosity gradients 
and unit cell sizes (1.5 and 2.5 mm) are studied. In section 2.3, the 
different FEA procedures analysed in this work are detailed. And finally, 

in section 2.4 the fabrication of the samples and the compressive tests 
are described. A scheme of the different analysis is illustrated in Fig. 1. 

2.1. Design of structures 

Seven different types of porous-graded structures were studied in this 
work. PTC CREO 5.0 (PTC Inc.) was used to design the structures, 
comprised of either a modified Face-Centred-Cubic (FCC) unit cell, an 
Octet truss (OCT) unit cell, as described in literature (Ruiz de Galarreta 
et al., 2020), or a combination of the two. The unit cell size for all the 
structures is 1.5 mm and all the structures are formed by 10 × 10 × 15 
unit cells (15 × 15 × 22.5 mm); 10 unit cells in the width directions (X 
and Z axes) and 15 unit cells in the height direction (Y axis). These 
structures are divided in different regions/layers depending on the 
porous gradient. The porous-graded lattice structures are described 
below and illustrated in Fig. 2:  

• A longitudinally porous graded FCC structure where the diameter of 
the struts decreases from the top to the bottom. In this structure, five 
different regions with their own specific strut diameter were defined 
(Fig. 2-a). Each region (or layer) will be formed by 10 × 10 × 3 unit 
cells. This structure will be denoted in this work as LG.  

• A laterally porous graded FCC structure where the diameter of the 
struts varies in the X-direction with five different regions (Fig. 2-b). 
Each region (or layer) will be formed by 2 × 10 × 15 unit cells. This 
structure will be denoted in this work as LTG.  

• Two radially porous graded FCC structures where the diameters vary 
in the radial direction. In the first structure, the maximum diameter 
is in the outside, while in the second structure it is in the inside of the 
structure. Again, five different regions were defined (Fig. 2-c). These 
structures will be denoted in this work as RG1 & RG2. In the figure, 
the top view of the RG1 structure is displayed, front view is not 
displayed as there is no porous gradient in the height direction (Y 
axis).  

• A longitudinally and radially FCC graded structure, where the strut 
diameters vary both longitudinal and radially. In the longitudinal 
direction three different regions were defined and each region was 
radially graded as illustrated in Fig. 2-e. This structure will be 
denoted in this work as LRG. Both top and front views of this 
structure are displayed in the figure.  

• The last two porous-graded structures are a radially porous graded 
structure and a laterally porous graded structure. However, in this 
case the porosity was varied not by changing the strut diameter, but 
by combining two different unit cells, the FCC and the Octet-truss 
unit cells. These structures will be denoted in this work as MRG & 
MLTG. For the MRG structure the two outer layers are formed by OCT 
unit cells, and the three inner layers by the FCC unit cells (Fig. 2-d). 
In the figure, the top view of this structure is displayed. For the MLTG 
structure, half of the structure is composed by FCC unit cells and the 
other half by OCT unit cells, i.e. 5 × 10 ×15 FCC unit cells and 5 × 10 
x 15 OCT unit cells. 

The procedure to determine the corresponding strut diameter for 
each of the layers of the structure is explained in Section 2.4.2 and the 
values are displayed in section 3.2. 

2.2. Analytical models 

Prior to simulating the mechanical behaviour of the designed 
structures, preliminary work analysed analytical models utilised previ
ously in literature. The accuracy estimating the stiffness of porous 
graded structures of the Kelvin-Voight model (Eq. (1)) and the rule of 
mixtures for composite materials (Eq. (2)) were analysed by studying 
four types of graded porous structures: longitudinally, radially and 
laterally porous graded FCC structures; and a radially graded structure 
formed by the FCC and OCT unit cells. For each type of structure, at least 
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10 different specimens with different diameters and porosity gradients 
were analysed. All the structures were composed by 10 × 10 × 15 unit 
cells, and two different sizes of unit cell (1.5 mm and 2.5 mm) were used. 

1
E
=

∑n

i=1
ki

1
Ei

(1)  

E =
∑n

i=1
kiEi (2) 

In these equations, n denotes the total number of layers (in the lon
gitudinal or radial direction), ki is the volume percentage of the corre
sponding layer with respect to the entire lattice structure, E the initial 
elastic modulus of the graded structure and Ei the elastic modulus cor
responding to layer i, which depends on its relative density. To this end, 
the Gibson and Ashby model (Eq. (3)) (Gibson and Ashby, 1997; Ashby, 
2006), which describes the elastic modulus (E) of a lattice as a function 
of its relative density, was derived for the FCC and OCT lattice 
structures. 

E
E0

=C
(

ρ
ρ0

)m

(3)  

where E0 and ρ0 are the base material properties and C and m are con
stants that should be determined for each of the structures (FCC and 
OCT). The methodology to analytically estimate the stiffness of the 
graded structures was as follows: first calculate the relative density for 
each layer, then calculate the stiffness of the corresponding layer by 
using Equation (3) and finally obtain the stiffness of the graded struc
tures by utilising Equation (1) or 2 depending on whether it is a longi
tudinal graded porous structure or a radial/lateral porous graded 
structure. 

The results for the 46 structures were then compared to FEA results 
to check the adequacy of the analytical models. The coefficients for 
Equation (3) where derived in section 2.3.1. 

The initial elastic modulus and yield strength of the seven FGPSs 
described in section 2.1 were also calculated analytically using equa
tions (1) and (2) and the Gibson and Ashby curves obtained in (Ruiz de 
Galarreta et al., 2020). As mentioned above Equation (1) was used for 
the LG structure, while Equation (2) was used for the RG, LTG, MRG and 
MLTG structures. For the LRG structure both equations were used. 
Firstly, Equation (2) was used to determine the modulus of each longi
tudinal layer, and then Equation (1) was used to calculate the elastic 
modulus of the structure. 

2.3. Finite element analysis 

In this section, the three different FEA procedures followed in this 
work are described. The first one is the most simple and it was only used 
to analyse the adequacy of the analytical models (with the 46 porous 
graded structures that can be found in the supplementary material). The 
second and third one were applied to the seven FGPSs described in 
section 2.1. The three procedures are based on a methodology described 

previously (Ruiz de Galarreta et al., 2020). ABAQUS 2020 (Dassault 
Systems) was used for numerical simulations. Compression platens were 
simulated by modelling two rigid shells (meshed with rigid rectangular 
elements R3D4) with a reference point. The bottom shell was encastred 
and all the degrees of freedom, except the displacement in the 
compression direction, were constrained for the top shell. The 
displacement applied to the top shell was set to progressively deform the 
FGPSs until they yield, with macroscopic strains ranging from 1% to 2% 
depending on the FGPS. Table 1 displays the bilinear elasto-plastic 
material model used for all the structures which was previously 
derived from uniaxial tensile tests of stainless steel struts with different 
diameters, in the same range as in this work. 

From the FE results, engineering stress – strain curves were gener
ated and the linear initial loading portion of the stress – strain curves 
was used to determine the modulus of the structures. Yield strength was 
taken at a 0.2% strain offset. Stress was defined as the reaction force on 
the rigid shells at the reference point divided by the specimen cross- 
sectional area (using the macro/apparent dimensions). The vertical 
displacement of the top shell divided by the original height of the 
structure was used to calculate strain. 

2.3.1. Numerical modelling of porous graded structures with standard beam 
model 

This procedure was followed to study the adequacy of the analytical 
models and it was applied to the 46 porous graded structures described 
in the Supplementary Material with unit cell sizes equal to 1.5 and 2.5 
mm. To simplify the calculations and following the mesh independence 
study performed in (Ruiz de Galarreta et al., 2020) the structures (10 ×
10 × 15 unit cells) were meshed with quadratic Timoshenko beam el
ements (each of the struts was meshed with 6 elements) and a friction
less contact was defined between the structure and the rigid shells. The 
Gibson and Ashby curves were also derived for the FCC and OCT uni
form structures. 

2.3.2. Numerical modelling of porous graded structures with solid elements 
The stiffness of the seven different porous graded structures with unit 

cell sizes equal to 1.5 mm (Fig. 2) was estimated by the FEA. Measure
ments of the actual manufactured struts, see 2.4.2, provided the input 
for the strut diameters used in the FE models. The FE specimen’s width 
and the length was equal to the manufactured specimens, i.e. 10 unit 
cells; however for element reduction, the height of the structure was 
only set to 5 unit cells. The exception to this was for the longitudinally 
and longitudinally & radially graded structures, where the whole 
structure was modelled. The height independence study performed in 
(Ruiz de Galarreta et al., 2020) concluded that the height of the spec
imen only needed to be modelled with 5 units cells for a good approx
imation of the mechanical properties. In this work the influence of the 
number of cells in the height direction was also studied, by analysing 
three different structures (MRG, RG1 and LTG) with varying number of 
unit cells in height. The defined boundary conditions allowed normal 
displacement on symmetric faces to be constrained and thus only one 
quarter of the structure needed to be modelled. However, in the case of 

Fig. 1. Diagram of the different analysis of the FGPSs.  
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the lateral graded structures, half of the structure was studied. Sym
metry boundary conditions were applied by constraining the displace
ment perpendicular to the plane of symmetry. The FEA boundary 
conditions utilised are seen in Fig. 3. To increase the accuracy of the FEA 
simulations all the models were meshed with 3D quadratic tetrahedral 
elements (C3D10) with an element size equal to 80 μm; and a friction 

coefficient equal to 0.1 (Ruiz de Galarreta et al., 2020). Note, that the 
Gibson and Ashby curves for the FCC (Ruiz de Galarreta et al., 2020) and 
OCT lattice structures will be different with these new conditions. 

Fig. 2. Porous graded lattice structures a) LG structure, b) LTG structure, c) RG1 structure, d) MRG structure and e) LRG structure.  
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2.3.3. Numerical modelling of porous graded structures with modified beam 
model 

The beam model can significantly reduce the computational time, 
specially for big structures, however this FE model for lattice structures 
is only accurate for very low densities as stated in a previous work in the 
literature (Ruiz de Galarreta et al., 2020). While increasing the density 
of lattice structures, the difference in the elastic modulus between the 
solid and beam mesh increases exponentially. To account for this dif
ference, in this work the stiffness matrix of each beam element has been 
artificially modified accordingly to its density by varying its base ma
terial elastic modulus (from E0 to Enew). First, an exponential equation 
(Eq. (4)) determining the difference in the elastic modulus between 
tetrahedral and beam meshes has been fitted for the FCC and OCT 
structures. Then, for each unit cell type and relative density the new base 
material elastic modulus is derived with Eq. (5). 

Ediff =K
(

ρ
ρ0

)n

(4)  

Enew =E0

(

1+
Ediff

Ebeam

)

(5)  

where E0 and Enew represent the actual and new base material elastic 
modulus, Ediff the difference in elastic modulus between the solid and 
beam models and Ebeam the equivalent elastic modulus of a uniform 
lattice structure derived from the beam model. The same procedure was 
followed with the yield strength. 

The seven different porous graded structures were modelled with an 
in-house code in Matlab (in this case the whole geometry) and the 
corresponding new base material elastic modulus was set for each type 
of unit cell (FCC or OCT) and relative density. These values can be found 
in the supplementary material. Then the same procedure as stated in 
section 2.2.1 was followed. The results were compared to the ones 
derived with the solid model. 

2.4. Experimental analysis 

2.4.1. Sample design and manufacturing 
For physical manufacture of the specimens, the functionally graded 

structures were designed in Rhino 6 as line-geometry. Structures were 
specified in a table of 7 columns and numerous rows, with every row 
specifying the co-ordinates of the two strut nodes as well as the diameter 
of the strut. Specimens had a 1.5 mm unit cell size. The cuboid test 
specimen size was 10 × 10 × 15 unit cells (15 × 15 × 22.5 mm) to meet 
the test specimen recommendations of Gibson & Ashby (Gibson and 
Ashby, 1997; Ashby et al., 2000) and the requirements of ISO 
13314:2011. Software, developed in-house, generated the slice data 
(build files) as described in (Ghouse et al., 2017, 2018), with strut 
thickness being controlled by the laser parameters. Relationships be
tween the manufactured diameter of the strut and the input laser pa
rameters have been established previously (Ghouse et al., 2017). 

Table 1 
Bilinear elasto-plastic model of the SLM (Selective Laser Melting) stainless steel 
struts (Ruiz de Galarreta et al., 2020).  

Young’s 
Modulus 
[GPa] 

Yield 
Stress 
[MPa] 

Ultimate 
Strength 
[MPa] 

Ultimate 
plastic strain 
[-] 

Poisson’s 
ratio [-] 

81.3 263.3 575.3 0.22 0.3  

Fig. 3. FEA displacement and boundary conditions for the RG1 structure (top) and LTG structure (bottom).  
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Consequently, laser parameters were specified on a strut-by-strut, 
region-by-region or part-by-part basis to produce porous graded speci
mens. All specimens were manufactured on a Renishaw AM250 metal 
powder bed fusion system, described previously in detail (Ghouse et al., 
2017, 2018) from Stainless Steel 316L powder (Carpenter Additive Ltd.). 
Electro discharge machining was used to cut the porous graded struc
tures off the base plate. Specimens were ground parallel and cleaned in 
ethanol ultrasonically prior to testing and analysis. 

2.5. Morphological analysis 

The relative density of each graded structure was calculated by 
weighing the specimen dry in atmospheric conditions and dividing the 
measured mass by the solid macro volume mass, assuming a density of 
8.1 g/cm3, this was repeated on 5 identical samples per unique struc
ture. The macro dimensions of the structure were measured by Vernier 
callipers. Scanning electron microscopy (Hitachi S–3400N) was utilised 
to image each structure. The diameter or thickness of the strut was 
measured on the resulting images via ImageJ in 20 locations and 
averaged. 

2.5.1. Quasi static compression testing 
A material testing machine (Instron 8872) equipped with a 10 kN 

load-cell was utilised to compressively test the lattices to ISO 
13314:2011. A constant compression/rate of 2 mm/min was maintained 
for all specimens. For each unique porous graded structure, to estimate 
the plateau strength, an initial sample was compressed to 50% strain and 
the average stress between 20 and 30% strain was calculated. These 
initial samples were also used to analyse the failure mode of each 
structure. Following this, samples of the same structure type (n = 3) 
were compression tested with a hysteresis loop between 70% and 20% of 
the estimated plateau strength, tests were ended at 50% strain. The 
purpose of the hysteresis loop is to account for localized plasticity in 
porous structures which decreases the initial loading curve’s slope 
(Ashby et al., 2000). Two LVDTs (RDP D6/05000A) recording at 30Hz 
were used to measure displacement between the platens. The average 
recorded displacement divided by the initial height of the specimen was 
defined as strain. Stress (σ) was calculated by dividing the measured 
load from the load-cell by the initial cross-sectional area of the specimen 
(i.e. the initial width & length). Elastic modulus (E) was calculated via 
linear regression of the hysteresis loop and yield strength (σy) was the 
intersection of the stress-strain curve and a 1.0%, relative to the elastic 
modulus, plastic compressive strain offset curve. 

3. Results 

3.1. Analytical models vs FEA 

The Gibson and Ashby curves for the elastic modulus of the uniform 
FCC and OCT lattice structures are represented in Fig. 4. One curve 
(solid line) is derived from FEA by modelling the structures with beam 
elements and a frictionless contact, while the other curve (dash line) is 
derived from FEA by meshing the structures with tetrahedral elements 
and defining a friction contact equal to 0.1. The difference between the 
models is greater for high relative densities, as the ratio of strut length: 
diameter is smaller and therefore at high relative densities the beam 
model is not a good approximation. There is also a difference between 
the two models due to the difference in the contact properties. 

The stiffness values estimated by the analytical models and FEA of 
the different structures analysed in this section can be found in the 
supplementary material. The accuracy of the analytical models has an 
average mean error (S.D.) of 7.7% (9.4%). The minimum difference 
between the analytical models and the FEA is seen with the hybrid radial 
porous graded structures with an average error equal to 0.13% (0.08%), 
while the maximum error between the approaches is seen with the 
longitudinal graded structures 14.5% (14.8%). 

3.2. Experimental results 

The measured strut thickness for each of the structure regions is 
displayed in Table 2. These strut diameter values were used in the FEA 
models. 

The failure mode of the RG, MRG, LTG and MLTG structures is 
similar, showing a homogenous ductile failure as shown in Fig. 5 (MLTG 
stress-strain curve is very similar to MRG stress-strain curve and it is not 
shown in the figure). In the case of the LG and LRG structures, the failure 
mode is represented by the collapse (crushing) of layer by layer (Fig. 5). 
In the LG structure it can be observed clearly that there are 5 steps, each 
representing the collapse of each layer. The sequential layer collapse can 
be seen in the step-like features of the stress-strain curves. 

3.3. FEA results 

3.3.1. FEA with solid elements 
The effect of how many unit cells are modelled in the height versus 

the modulus of the graded structures was analysed for the MRG, RG1 
and LTG structures and is displayed in Fig. 6. The difference in modulus 
between modelling 5 versus 6 unit cells in height is lower than 3% and 
therefore to reduce computational cost, 5 unit cells were modelled in 
height for all structures, except for the LG and LRG structures. 

The relative density of the FGPS (excluding the hybrid structures) is 
displayed in Table 3. The displayed relative density is obtained from the 

Fig. 4. Gibson and Ashby curves for the FCC and OCT unit cells.  
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ideal structures designed with the corresponding strut diameters 
(Table 2). Yield strength and elastic modulus results obtained by FEA are 
also displayed together with values of uniform porous structures with 
the corresponding relative density. The latter values were obtained from 
previously obtained Gibson and Ashby curves (Ruiz de Galarreta et al., 
2020). 

The structures where the porosity gradient is parallel to the loading 
direction (LG structure) have a lower elastic modulus and lower yield 
strength than uniform porous lattice structures with the same relative 
density. This difference in the modulus and yield stress is understand
able as the LG will collapse first in the bottom layer, where the relative 
density is lower than uniform porous structures. As can be seen in Fig. 7, 
the bottom layer, composed of thinner struts, has the greatest von mises 
stresses and is therefore the first to collapse. It can be observed that the 
stress concentration appears close to the node regions forming a plastic 
hinge. In contrast, for the structures where the porosity gradient is 
perpendicular to the direction of loading (RG1, RG2 and LT structures) 
the von mises stress is distributed more homogeneously between layers 
as can be seen in Fig. 7. 

This can also be observed when analysing the deformation in struc
tures where the porosity gradient is parallel or perpendicular to the 
direction of loading. Fig. 8 illustrates the relative strain of each layer 
with respect to the lattice structure strain for LG and RG2 structures. The 
maximum von mises stress for each layer is also shown in the figure. As it 
can be observed, from the beginning of the LG structure deformation, 
the weakest layer (layer 1) takes most of the LG structure strain (around 
55%). At 0.4% of strain, the plastic hinge is formed in layer 1 thus the 
relative strain of this layer with respect to the total strain increases. 
Looking at the von mises stress, it can be observed that only layer 1 and 2 
has reached the yield strength of the material (263.3 MPa – Table 1). In 
contrast, when analysing the RG2 structure, it can be observed that all 
the layers have the same strain and the difference in maximum von 
mises stress between layers is not so high. As one can expect, if all the 
layers have the same strain, the layers with higher relative density 
(higher stiffness) will carry higher loads than the rest of the layers. 

In the RG1, RG2 and LT structures the elastic modulus is 11.6%, 
15.7% and 21.1% greater than their corresponding uniform porous 
structures. The yield strength is 11.1% and 10.6% greater for RG2 and 
LTG structures, and 0.2% lower for RG1 structure. For the LRG structure 
where the porosity gradient is in both directions, perpendicular and 
parallel to the loading direction, differences with the uniform porous 
structure will depend on the relative density of the weaker layer in the 
longitudinal direction. Table 4 displays the stiffness & strength to weight 
ratios for all the porous graded structures and their corresponding uni
form porous structures. From the structures analysed in this work, the 
RG2 structure has the highest strength-weight and stiffness-weight ratio, 
while the hybrid structures have the lowest values. This is understand
able as the second unit cell type used in these structures (OCT unit cell) 
is less stiff than the FCC unit cell as can be seen in Fig. 4. If the hybrid 
structures are not considered, the LG structure has the lowest stiffness & 
strength - weight ratios which is expected, as both the stiffness and 
strength of the structure are mostly defined by the weakest layer of the 
structure. It can also be observed that the structures where there is no 
change in strut diameter (MRG and MLTG) have the highest strength- 

Table 2 
Strut diameters mean (S.D.) measured from the lattice structures (in μm).   

LG RG1 RG2 LTG MRG MLTG 

Layer 
1 

207.8 
(7.8) 

206.8 
(26.3) 

373.3 
(15.1) 

206.8 
(26.3) 

206.2 
(10.3) 
FCC & 
OCT 

206.2 (10.3) 
FCC & OCT 

Layer 
2 

249.1 
(9.9) 

241.3 
(6.7) 

344.9 
(10.2) 

241.3 
(6.7) 

Layer 
3 

306.8 
(14.3) 

289.3 
(11.3) 

289.3 
(11.3) 

289.3 
(11.3) 

Layer 
4 

372.9 
(19.3) 

344.9 
(10.2) 

241.3 
(6.7) 

344.9 
(10.2) 

Layer 
5 

395.4 
(9.1) 

373.3 
(15.1) 

206.8 
(26.3) 

373.3 
(15.1) 

LRG  
Radial Layer 1 Radial 

Layer 
2 

Radial 
Layer 
3 

Radial 
Layer 
4 

Radial Layer 5 

Layer 
1 

344.9 (10.2) 289.3 
(11.3) 

241.3 
(6.7) 

206.8 
(26.3) 

206.8 (26.3) 

Layer 
2 

344.9 (10.2) 289.3 
(11.3) 

289.3 
(11.3) 

241.3 
(6.7) 

241.3 (6.7) 

Layer 
3 

344.9 (10.2) 344.9 
(10.2) 

289.3 
(11.3) 

289.3 
(11.3) 

289.3 (11.3)  

Fig. 5. Experimental stress-strain curves of the FGPSs.  

Fig. 6. Height independence study of the FGPS.  

Table 3 
FEA relative density, elastic modulus and yield strength of the FGPS and elastic 
modulus and yield strength of uniform lattice structures with the corresponding 
relative density.   

LG RG1 RG2 LTG LRG 

(ρ /ρs) 0.157 0.106 0.178 0.142 0.157 
Egraded [MPa] 1065.2 913.9 3137.1 1947.8 2046.9 
Euniform [MPa] 2029.0 818.9 2711.6 1609.0 2029.0 
σy,graded [MPa] 5.17 6.18 17.97 11.77 12.06 
σy,uniform [MPa] 12.82 6.19 16.17 10.64 12.82  
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stiffness ratio. 

3.3.2. FEA with beam elements 
The difference in the equivalent elastic modulus of uniform lattice 

structures between the tetrahedral and beam mesh for the FCC and OCT 
structures is illustrated in Fig. 9. The new base material data for each of 
the layers is displayed in the Supplementary Material. 

The results of the simulations indicate an acceptable accuracy for the 
beam models, with an average difference (SD) in the equivalent elastic 
modulus and yield strength between the solid and beam model equal to 
4.6% (3.7%) and 6.1% (5.7%), respectively. The maximum difference 
was found in the LG structure, 11.8% in the elastic modulus and 17.6% 
in the yield strength. The comparison between the solid and beam 
models for the seven FGPSs is displayed in Table 5. In order to show the 
computational time reduction, the number of degrees of freedom is also 
displayed in the table. It should be noted that for the beam model the 
whole structure was modelled and symmetry was not applied. 

3.4. Numerical and experimental results 

The experimental, solid FE model and analytical elastic modulus of 
the fabricated structures are illustrated in Fig. 10 and displayed in 
Table 6. It should be noted that the unit cell size of all these structures is 
1.5 mm. In the case of the longitudinal graded structures (LG and LRG), 
the elastic modulus was derived from the first slope of the stress-strain 
curves. The mean error (SD) between the FEA with solid elements and 
the experiments is 8.7% (7.0%). The lowest errors are found in the 
hybrid lattice structures composed of the FCC and OCT unit cells where 
the strut diameter is constant. In the case of the LG and LRG structure, 
despite having the same relative density, the LRG structure is signifi
cantly stiffer due to the orientation of the structure. 

The results from the FEA and the analytical models are very close, 
with an average difference equal to 3.5% (2.4%). As in section 3.1, the 
analytical model is closer to the FEA results for the hybrid structures 
where there is no change in the strut diameter. 

Numerical and experimental yield strength values are illustrated in 
Fig. 11. The mean difference (SD) between the yield strength between 
the FEA and experimental data is greater than the elastic modulus, 
15.01% (10.48%,Table 7). Similarly, the difference between the FEA 

Fig. 7. FEA Von Mises stress distribution of the a) LG and b) RG2 structures.  

Fig. 8. Relative layer strain for LG (left) and RG2 (right) structures. Maximum von mises points for each layer represented with dots.  

Table 4 
Stiffness-weight, strength-weight and strength-stiffness ratio of the analysed 
porous graded structures. In parenthesis the ratios of their corresponding uni
form porous structures.   

Stiffness-weight ratio 
[MPa/g] 

Strength-weight ratio 
[MPa/g] 

Strength-stiffness ratio 
(x103) [-] 

LG 165.5 (315.2) 0.80 (1.99) 4.83 (6.31) 
RG1 210.3 (188.4) 1.42 (1.42) 6.75 (7.54) 
RG2 429.8 (371.5) 2.46 (2.22) 5.72 (5.98) 
LTG 334.5 (276.3) 2.02 (1.83) 6.04 (6.62) 
LRG 317.9 (315.2) 1.87 (1.99) 5.88 (6.31) 
MRG 130.6 1.13 8.65 
MLTG 127.1 1.10 9.08  
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and analytical results are greater for the yield strength 10.69% 
(18.40%). Again, the analytical model is more accurate for the hybrid 
structures. 

4. Discussion 

Functionally graded porous structures are unique materials 

Fig. 9. Difference in the equivalent elastic modulus for the FCC (top) and OCT (bottom) structures. Beam and solid model (left) and difference (right).  

Table 5 
Degrees of freedom, elastic modulus and yield strength of the porous graded structures for the solid and beam FE models.   

d.o.f. (*105) Elastic modulus [MPa] Yield strength [MPa] 

Solid model Beam model Solid model Beam model Differ. (%) Solid model Beam model Differ. (%) 

LG 174.4 7.4 1065.2 1190.6 11.8 5.17 6.08 17.6 
RG1 49.2 7.4 913.9 923.29 1.0 6.18 6.44 4.2 
RG2 69.4 7.4 3137.1 3026.3 3.5 17.97 17.93 0.2 
LTG 115.0 7.4 1947.8 1848.5 5.1 11.77 11.49 2.4 
LRG 198.1 7.4 2046.9 2183.0 6.6 12.06 13.09 8.5 
MRG 57.9 16.7 626.4 635.6 1.5 5.40 5.64 4.5 
MLTG 106.0 15.3 557.5 571.7 2.6 4.83 5.09 5.5    

Average (S.D) 4.6 (3.7) Average (S.D) 6.1 (5.7)  

Fig. 10. Experimental, FEA and analytical elastic modulus of the FGPSs.  
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possessing variations in their structure all through their volume to 
produce tailored properties. This allows for greater optimisation both 
locally and globally in a component of mechanical properties such as 
enhanced strength:weight, stiffness:weight, strength:stiffness and en
ergy absorption as well as thermal and acoustic properties. Particularly 
in joint replacements where the density and stiffness of bone varies both 
locally at joints and throughout the skeleton, the integration of FGPS 
into orthopaedic implants represents an exciting new development to 
biomechanically match implants to the native tissue. 

In this work the behaviour of seven different porous graded struc
tures have been analysed analytically, experimentally and numerically. 
Two different FEA procedures have been studied: 1) an existing FEA 
methodology for uniform porous structures using solid elements and 2) a 
novel FEA methodology using beam elements with a modified stiffness 
matrix. Both approaches have been found to accurately predict the 
elastic properties of any FGPS independently of the porosity grading 
direction. While the average error in the elastic modulus of the FGPS is 
less than 10% for the first methodology, the average difference between 
the beam model and solid model was found to be less than 5%. It should 
be noted that while the simulations for the solid models can take from 1 
to 3 days, the simulations for the beam models can be run in less than 20 
min. Although the first methodology would represent local stresses in 
the struts more accurately, the second approach drastically reduces the 
computational time making it ideal when designing and analysing 
components composed of big FGPS where modelling them with solid 
elements is prohibitive. This finding provides two methods of rapidly 
designing porous graded structures to meet structural requirements 
before they are manufactured. The FEA results can also help when 
analysing the fatigue performance of these structures, which is still 
relatively undefined (Maconachie et al., 2019). For instance, local ten
sile stresses can help in developing an analytical fatigue life model for 
these structures (Lietaert et al., 2018). 

It was experimentally observed that the deformation behaviour of 
FGPSs depends on the porosity gradient direction. Failure mode of 
structures with porosity gradient perpendicular to the load direction 
(RG, MRG, LTG and MLTG) show a homogenous ductile failure. The 

deformation is similar to uniform porous structures and three main 
stages can be observed: a linear elastic deformation, a plateau region 
and finally a densification region. These results are in accordance with 
other results in the literature where radially (Zhang et al., 2019) and 
laterally (Yang et al., 2019) graded porous structures are studied. In 
contrast, for the structures, where the porosity gradient direction is 
parallel to the load direction (LG), the failure mode is represented by the 
collapse of each layer. These results are also in accordance with other 
results in the literature (Maskery et al., 2016; Zhao et al., 2020; Al-Saedi 
et al., 2018). This deformation behaviour was also observed in the LRG 
structure, where the porosity is graded in both directions. 

The results also show that radially graded porous structures 
outperform the behaviour of their corresponding uniform porous 
structure under compression loads in stiffness:weight (11.6% and 15.7% 
increase of the elastic modulus for the RG1 and RG2 structures), which is 
expected, as the rule of mixtures for composite materials (Eq. (2)) is a 
linear equation while Gibson and Ashby equation (Eq. (3)) is exponen
tial. A simple case is represented in Fig. 12. A radially graded porous 
structure which has a relative density of 0.1 in the outer layer (50% of 
the total volume) and a relative density of 0.3 in the inner layer (50% of 
the total volume). The corresponding uniform porous structure would 
have a relative density equal to 0.2. As can be seen in Fig. 12, the elastic 
modulus under compression will be higher for the radially graded 
porous structure represented by the linear equation of the rule of mix
tures. In contrast, the elastic modulus of longitudinally graded porous 
structures will be highly influenced by the collapse of the weakest layer 
of the porous graded structure, and therefore weaker than a uniform 
porous structure of similar relative density. 

Analysis on the mechanical behaviour of graded porous structures is 
mostly limited to experiments. There are few studies comparing the 
numerically and experimentally derived mechanical properties of metal 
graded porous structures. Zhao et al. (2020) analysed two types of unit 
cells, the primitive and gyroid TPMS, grading the porosity in the axial 
direction. The difference found in the elastic modulus was 26.5% and 
38.9%, respectively. The same type of porous graded structure was 
analysed by Zhou et al. (2020) comparing the network and sheet based 

Table 6 
Experimental, FEA and analytical elastic modulus of the porous graded 
structures.   

Experimental 
[MPa] 

FEA 
[MPa] 

Analytical 
[MPa] 

Difference 
Exp. Vs 
FEA 

Difference 
FEA vs Anal. 
(%) 

LG 1120 1065.2 1009.2 4.9 5.3 
RG1 1033 913.9 925.4 11.5 1.3 
RG2 2898 3137.1 3000.2 8.3 4.4 
LTG 1596 1947.8 1832.9 22.0 5.9 
LRG 2265 2046.9 2114.4 9.6 3.3 
MRG 625 626.38 618.8 0.2 1.2 
MLTG 584 557.46 560.5 4.5 0.5   

Average (S.D) 8.7 (7.0) 3.5 (2.4)  

Fig. 11. Experimental, FEA and analytical yield strength of the FGPSs.  

Table 7 
Experimental, FEA and analytical yield strength of the porous graded structures.   

Experimental 
[MPa] 

FEA 
[MPa] 

Analytical 
[MPa] 

Difference 
Exp. Vs 
FEA 

Difference 
FEA vs Anal. 
(%) 

LG 4.69 5.17 7.86 10.23 52.03 
RG1 5.99 6.18 6.45 3.17 4.37 
RG2 15.43 17.97 17.25 16.46 4.01 
LTG 8.92 11.77 11.25 31.95 4.40 
LRG 12.01 12.06 13.05 0.42 8.21 
MRG 4.33 5.40 5.32 24.71 1.37 
MLTG 4.09 4.83 4.85 18.09 0.42   

Average (S.D) 15.01 
(10.48) 

10.69 (18.40)  
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Gyroid TPMS. The average error found in the elastic modulus and yield 
strength was 29.9% and 28.3% respectively. Al-Saedi et al. (2018) 
analysed the energy absorption of a F2BCC axially graded structure, but 
the elastic modulus of the graded structure was much higher for the 
experimental test than from the numerical study. Zhang et al. (2019) 
analysed one radially graded porous structure formed by a diamond unit 
cell. The error between experiments and FEA for the elastic modulus was 
only 4.6% (18.8% for the ideal model). While accurate, this method 
relies on micro-CT scanning to measure strut diameter deviations and 
defects. With respect to the analytical models, as previously reported, 
both the Kelvin-Voight model and the rule of mixtures are good tools to 
estimate the elastic modulus of the structures versus FEA (Yang et al., 
2019; Maskery et al., 2018; Zhang et al., 2019). Maskery et al. (2018). 
found an error between the Kelvin-Voight model and FEA results 
ranging from 10% to 14% when analysing longitudinally porous graded 
TPMS structures (Maskery et al., 2018). Zhang et al. analysed radially 
graded porous structures finding an error between the FEA and the rule 
of mixtures around 4% (Zhang et al., 2019). The average error found in 
this work is similar for the fabricated structures (3.5%). The average 
error found in the structures which have been modelled with beam el
ements is also low, 7.7%. From this analysis it can be concluded that the 
analytical models more accurately predict the elastic modulus of radially 
graded porous structures than longitudinally graded porous structures. 

Some differences in the elastic modulus between experimental and 
FEA results were noticed in this study. These might be attributed to small 
errors in the strut diameter measurements. Differences in the yield 
strength between experiments and FEA (around 16%), may be due to 
other source of errors: the elasto-plastic material model overpredicting 
the FEA yield strength by around 4% (Ruiz de Galarreta et al., 2020), 
structural irregularities such as strut waviness and residual stresses 
which is likely present in the structures, and these factors are not 
accounted in the FEA model. A possible source of the error between FEA 
and analytical models is the stress concentrations in the node regions 
due to the change in strut diameters. For instance, L7 and L10 have a 
longitudinally porosity gradient with strut diameter ranging from 0.2 
mm to 0.4 mm (Table S1). While in L10 there are only 3 different layers, 
the L7 structure has 5 different layers, making the strut diameter tran
sition more smoothly. This smooth transition contributes to the low 
error of the L7 structure (4.5%) compared to L10 (25.9%). In the case of 
the hybrid structures, where there is no change in strut diameter, the 
analytical models predict the elastic modulus of the structures very 
accurately with average difference equal to 0.1%. 

A drawback of this work is that the elastic properties of the structures 
were derived only for one direction, while the structures presented in 

this work are transversely isotropic. In an ongoing work, we are ana
lysing other elastic properties (young’s and shear modulus, Poisson’s 
coefficients) required to completely define the stiffness matrix of the 
structure. It should be also mentioned, that a single Young’s modulus 
derived from our previous work (Ruiz de Galarreta et al., 2020) was used 
to define the isotropic material model for all the structures. Recently it 
was also observed that building angle direction and strut diameter do 
not affect the Young’s modulus and neither the yield strength for SS316L 
(Hossain et al., 2021). Another disadvantage of the procedures analysed 
in this work is that they are only valid to study the elastic properties of 
the structures (the first region of the stress-strain curves) and they are 
not valid for instance to define the energy absorption of the structures. 
However, for many applications the FGPSs will work in the elastic 
region. 

5. Conclusion 

The mechanical behaviour of seven different Stainless Steel 316L 
porous graded structures manufactured by laser powder bed fusion was 
experimentally and numerically investigated. The porosity gradient in 
the structures was achieved by either: 1) varying the strut diameter or 2) 
combining two types of unit cells (FCC and OCT). The porosity gradient 
was designed in different directions: longitudinally, laterally, radially 
and longitudinally & radially. The following conclusions are derived 
from the study:  

1) A FEA procedure described in the literature for uniform porous 
graded structures is appropriate to analyse different porous graded 
structures. The yield strength and elastic modulus values of the 
porous graded structures are predicted by FEA with good accuracy.  

2) A novel FEA procedure, which drastically reduces the computational 
time, is proposed to model with accuracy different functionally 
graded porous structures.  

3) The FEA results show that the stress concentration appear close to 
the node regions and depend on the porosity gradient direction. For 
longitudinally structures it can be observed that when the plastic 
hinge is formed in the weakest layer, the relative strain of that layer 
increases. In contrast, for structures with porosity gradients 
perpendicular to the direction of loading, the von mises stress is more 
homogeneously distributed between layers.  

4) The Kelvin-Voight model and rule of mixtures are also an accurate 
tool to predict the yield strength and elastic modulus of porous 
graded structures, especially for structures with a smooth transition 
of the strut diameter. The accuracy for hybrid structures, where there 
is no change in the strut diameter was found to be very high. 

5) The experimental and numerical analysis show that porous struc
tures with graded porosity in the perpendicular direction to the load 
have higher yield strength and elastic modulus than the corre
sponding uniform structures. In the case of the structures with a 
porosity gradient parallel to the load direction, these values will 
primarily depend on the weakest layers of the structure. 
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Jetté, B., Brailovski, V., Dumas, M., Simoneau, C., Terriault, P., 2018. Femoral stem 
incorporating a diamond cubic lattice structure: design, manufacture and testing. 
J. Mech. Behav. Biomed. Mater. 77, 58–72. https://doi.org/10.1016/j. 
jmbbm.2017.08.034. 

Lietaert, K., Cutolo, A., Boey, D., Van Hooreweder, B., 2018. Fatigue life of additively 
manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and 
compression-compression fatigue load. Sci. Rep. 8, 1–9. https://doi.org/10.1038/ 
s41598-018-23414-2. 

Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., Yan, C., 2017a. Stiffness and 
strength tailoring of cobalt chromium graded cellular structures for stress-shielding 
reduction. Mater. Des. 114, 633–641. https://doi.org/10.1016/j. 
matdes.2016.11.090. 

Limmahakhun, S., Oloyede, A., Chantarapanich, N., 2017b. Alternative designs of load −
sharing cobalt chromium graded femoral stems. Mater. Today Commun. 12, 1–10. 
https://doi.org/10.1016/j.mtcomm.2017.05.002. 

Liu, F., Mao, Z., Zhang, P., Zhang, D.Z., Jiang, J., Ma, Z., 2018a. Functionally graded 
porous scaffolds in multiple patterns : new design method , physical and mechanical 
properties. Mater. Des. 160, 849–860. https://doi.org/10.1016/j. 
matdes.2018.09.053. 

Liu, F., Mao, Z., Zhang, P., Zhang, D.Z., Jiang, J., Ma, Z., 2018b. Functionally graded 
porous scaffolds in multiple patterns : new design method , physical and mechanical 
properties. Mater. Des. 160, 849–860. https://doi.org/10.1016/j. 
matdes.2018.09.053. 

Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., 
2019. SLM lattice structures: properties, performance, applications and challenges. 
Mater. Des. 183, 108137. https://doi.org/10.1016/j.matdes.2019.108137. 

Mahbod, M., Asgari, M., 2019. Elastic and plastic characterization of a new developed 
additively manufactured functionally graded porous lattice structure: analytical and 
numerical models. Int. J. Mech. Sci. 155, 248–266. https://doi.org/10.1016/j. 
ijmecsci.2019.02.041. 

Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A., Wildman, R.D., 
Hague, R.J.M., 2016. Materials Science & Engineering A A mechanical property 
evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective 
laser melting. Mater. Sci. Eng. 670, 264–274. https://doi.org/10.1016/j. 
msea.2016.06.013. 

Maskery, I., Aremu, A.O., Parry, L., Wildman, R.D., Tuck, C.J., Ashcroft, I.A., 2018. 
Effective design and simulation of surface-based lattice structures featuring volume 
fraction and cell type grading. Mater. Des. 155, 220–232. https://doi.org/10.1016/j. 
matdes.2018.05.058. 

Montazerian, H., Mohamed, M.G.A., Montazeri, M.M., Kheiri, S., Milani, A.S., Kim, K., 
Hoorfar, M., 2019. Permeability and mechanical properties of gradient porous PDMS 
scaffolds fabricated by 3D-printed sacrificial templates designed with minimal 
surfaces. Acta Biomater. 96, 149–160. https://doi.org/10.1016/j. 
actbio.2019.06.040. 

Ruiz de Galarreta, S., Jeffers, J.R.T., Ghouse, S., 2020. A validated finite element analysis 
procedure for porous structures. Mater. Des. 189, 108546. https://doi.org/10.1016/ 
j.matdes.2020.108546. 

Wally, Z.J., Haque, A.M., Feteira, A., Claeyssens, F., Goodall, R., Reilly, G.C., 2019. 
Selective laser melting processed Ti6Al4V lattices with graded porosities for dental 
applications. J. Mech. Behav. Biomed. Mater. 90, 20–29. https://doi.org/10.1016/j. 
jmbbm.2018.08.047. 

Wang, S., Liu, L., Li, K., Zhu, L., Chen, J., Hao, Y., 2019. Pore functionally graded 
Ti6Al4V scaffolds for bone tissue engineering application. Mater. Des. 168, 107643. 
https://doi.org/10.1016/j.matdes.2019.107643. 

Xiong, Y.Z., Gao, R.N., Zhang, H., Dong, L.L., Li, J.T., Li, X., 2020. Rationally designed 
functionally graded porous Ti6Al4V scaffolds with high strength and toughness built 
via selective laser melting for load-bearing orthopedic applications. J. Mech. Behav. 
Biomed. Mater. 104, 103673. https://doi.org/10.1016/j.jmbbm.2020.103673. 

Yang, L., Mertens, R., Ferrucci, M., Yan, C., Shi, Y., Yang, S., 2019. Continuous graded 
Gyroid cellular structures fabricated by selective laser melting: design, 
manufacturing and mechanical properties. Mater. Des. 162, 394–404. https://doi. 
org/10.1016/j.matdes.2018.12.007. 

Zhang, X.Y., Fang, G., Leeflang, S., Zadpoor, A.A., Zhou, J., 2019. Topological design, 
permeability and mechanical behavior of additively manufactured functionally 
graded porous metallic biomaterials. Acta Biomater. 84, 437–452. https://doi.org/ 
10.1016/j.actbio.2018.12.013. 

Zhao, M., Zhang, D.Z., Liu, F., Li, Z., Ma, Z., Ren, Z., 2020. Mechanical and energy 
absorption characteristics of additively manufactured functionally graded sheet 
lattice structures with minimal surfaces. Int. J. Mech. Sci. 167 https://doi.org/ 
10.1016/j.ijmecsci.2019.105262. 

Zhou, H., Zhao, M., Ma, Z., Zhang, D.Z., Fu, G., 2020. Sheet and network based 
functionally graded lattice structures manufactured by selective laser melting: 
design, mechanical properties, and simulation. Int. J. Mech. Sci. 175 https://doi.org/ 
10.1016/j.ijmecsci.2020.105480. 

S. Ruiz de Galarreta et al.                                                                                                                                                                                                                    

https://doi.org/10.1016/j.jmbbm.2021.104784
https://doi.org/10.1016/j.jmbbm.2021.104784
mailto:rdm-enquiries@imperial.ac.uk
mailto:rdm-enquiries@imperial.ac.uk
https://doi.org/10.1016/j.jmbbm.2019.103520
https://doi.org/10.1016/j.jmbbm.2019.103520
https://doi.org/10.1016/j.matdes.2018.01.059
https://doi.org/10.1016/j.matdes.2018.01.059
https://doi.org/10.1098/rsta.2005.1678
http://refhub.elsevier.com/S1751-6161(21)00426-4/sref4
http://refhub.elsevier.com/S1751-6161(21)00426-4/sref4
https://doi.org/10.1016/j.ijmecsci.2020.105735
https://doi.org/10.1016/j.ijmecsci.2020.105735
https://doi.org/10.1016/j.jmbbm.2021.104613
https://doi.org/10.1016/j.matdes.2017.06.041
https://doi.org/10.1016/j.matdes.2017.06.041
https://doi.org/10.1016/j.addma.2018.05.024
https://doi.org/10.1016/j.addma.2018.05.024
https://doi.org/10.1016/j.apmt.2019.02.017
https://doi.org/10.1016/j.apmt.2019.02.017
https://doi.org/10.1017/CBO9781139878326
https://doi.org/10.1016/j.jmbbm.2018.01.013
https://doi.org/10.1016/j.jmbbm.2015.07.013
https://doi.org/10.1016/j.jmbbm.2015.07.013
https://doi.org/10.1016/j.msec.2014.08.050
https://doi.org/10.1016/j.msec.2014.08.050
https://doi.org/10.1016/j.addma.2021.102050
https://doi.org/10.1016/j.addma.2021.102050
https://doi.org/10.1016/j.jmbbm.2017.08.034
https://doi.org/10.1016/j.jmbbm.2017.08.034
https://doi.org/10.1038/s41598-018-23414-2
https://doi.org/10.1038/s41598-018-23414-2
https://doi.org/10.1016/j.matdes.2016.11.090
https://doi.org/10.1016/j.matdes.2016.11.090
https://doi.org/10.1016/j.mtcomm.2017.05.002
https://doi.org/10.1016/j.matdes.2018.09.053
https://doi.org/10.1016/j.matdes.2018.09.053
https://doi.org/10.1016/j.matdes.2018.09.053
https://doi.org/10.1016/j.matdes.2018.09.053
https://doi.org/10.1016/j.matdes.2019.108137
https://doi.org/10.1016/j.ijmecsci.2019.02.041
https://doi.org/10.1016/j.ijmecsci.2019.02.041
https://doi.org/10.1016/j.msea.2016.06.013
https://doi.org/10.1016/j.msea.2016.06.013
https://doi.org/10.1016/j.matdes.2018.05.058
https://doi.org/10.1016/j.matdes.2018.05.058
https://doi.org/10.1016/j.actbio.2019.06.040
https://doi.org/10.1016/j.actbio.2019.06.040
https://doi.org/10.1016/j.matdes.2020.108546
https://doi.org/10.1016/j.matdes.2020.108546
https://doi.org/10.1016/j.jmbbm.2018.08.047
https://doi.org/10.1016/j.jmbbm.2018.08.047
https://doi.org/10.1016/j.matdes.2019.107643
https://doi.org/10.1016/j.jmbbm.2020.103673
https://doi.org/10.1016/j.matdes.2018.12.007
https://doi.org/10.1016/j.matdes.2018.12.007
https://doi.org/10.1016/j.actbio.2018.12.013
https://doi.org/10.1016/j.actbio.2018.12.013
https://doi.org/10.1016/j.ijmecsci.2019.105262
https://doi.org/10.1016/j.ijmecsci.2019.105262
https://doi.org/10.1016/j.ijmecsci.2020.105480
https://doi.org/10.1016/j.ijmecsci.2020.105480

	Laser powder bed fusion of porous graded structures: A comparison between computational and experimental analysis
	1 Introduction
	2 Materials and methods
	2.1 Design of structures
	2.2 Analytical models
	2.3 Finite element analysis
	2.3.1 Numerical modelling of porous graded structures with standard beam model
	2.3.2 Numerical modelling of porous graded structures with solid elements
	2.3.3 Numerical modelling of porous graded structures with modified beam model

	2.4 Experimental analysis
	2.4.1 Sample design and manufacturing

	2.5 Morphological analysis
	2.5.1 Quasi static compression testing


	3 Results
	3.1 Analytical models vs FEA
	3.2 Experimental results
	3.3 FEA results
	3.3.1 FEA with solid elements
	3.3.2 FEA with beam elements

	3.4 Numerical and experimental results

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


