1,572 research outputs found

    Vitamin C deficiency in critically ill COVID-19 patients admitted to intensive care unit

    Get PDF
    COVID-19; SARS-CoV-2 pneumonia; Vitamin CCOVID-19; Neumonía por SARS-CoV-2; Vitamina CCOVID-19; Pneumònia per SARS-CoV-2; Vitamina CObjectives: To determine vitamin C plasma kinetics, through the measurement of vitamin C plasma concentrations, in critically ill Coronavirus infectious disease 2019 (COVID-19) patients, identifying eventually the onset of vitamin C deficiency. Design: Prospective, observational, single-center study. Setting: Intensive Care Unit (ICU), Vall d’Hebron University Hospital, Barcelona. Study period from November 12th, 2020, to February 24th, 2021. Patients: Patients who had a severe hypoxemic acute respiratory failure due to COVID-19 were included. Interventions: Plasma vitamin C concentrations were measured on days 1, 5, and 10 of ICU admission. There were no vitamin C enteral nor parenteral supplementation. The supportive treatment was performed following the standard of care or acute respiratory distress syndrome (ARDS) patients. Measurement: Plasma vitamin C concentrations were analyzed using an ultra-performance liquid chromatography (UPLC) system with a photodiode array detector (wavelength set to 245 nm). We categorized plasmatic levels of vitamin C as follows: undetectable: 5 mg/L). Main results: Forty-three patients were included (65% men; mean age 62 ± 10 years). The median Sequential Organ Failure Assessment (SOFA) score was 3 (1–4), and the Acute Physiology and Chronic Health disease Classification System (APACHE II) score was 13 (10–22). Five patients had shock. Bacterial coinfection was documented in 7 patients (16%). Initially all patients required high-flow oxygen therapy, and 23 (53%) further needed invasive mechanical ventilation during 21 (± 10) days. The worst PaO2/FIO2 registered was 93 (± 29). ICU and hospital survival were 77 and 74%, respectively. Low or undetectable levels remained constant throughout the study period in the vast majority of patients. Conclusion: This observational study showed vitamin C plasma levels were undetectable on ICU admission in 86% of patients with acute respiratory failure due to COVID-19 pneumonia requiring respiratory support. This finding remained consistent throughout the study period

    The prognostic impact of SIGLEC5-induced impairment of CD8+ T cell activation in sepsis

    Get PDF
    Immune checkpoint; Sepsis; T-cell exhaustionPunto de control inmunológico; Septicemia; Agotamiento de células TPunt de control immunitari; Sèpsia; Esgotament de cèl·lules TBackground Sepsis is associated with T-cell exhaustion, which significantly reduces patient outcomes. Therefore, targeting of immune checkpoints (ICs) is deemed necessary for effective sepsis management. Here, we evaluated the role of SIGLEC5 as an IC ligand and explored its potential as a biomarker for sepsis. Methods In vitro and in vivo assays were conducted to both analyse SIGLEC5's role as an IC ligand, as well as assess its impact on survival in sepsis. A multicentre prospective cohort study was conducted to evaluate the plasmatic soluble SIGLEC5 (sSIGLEC5) as a mortality predictor in the first 60 days after admission in sepsis patients. Recruitment included sepsis patients (n = 346), controls with systemic inflammatory response syndrome (n = 80), aneurism (n = 11), stroke (n = 16), and healthy volunteers (HVs, n = 100). Findings SIGLEC5 expression on monocytes was increased by HIF1α and was higher in septic patients than in healthy volunteers after ex vivo LPS challenge. Furthermore, SIGLEC5-PSGL1 interaction inhibited CD8+ T-cell proliferation. Administration of sSIGLEC5r (0.8 mg/kg) had adverse effects in mouse endotoxemia models. Additionally, plasma sSIGLEC5 levels of septic patients were higher than HVs and ROC analysis revealed it as a mortality marker with an AUC of 0.713 (95% CI, 0.656–0.769; p < 0.0001). Kaplan–Meier survival curve showed a significant decrease in survival above the calculated cut-off (HR of 3.418, 95% CI, 2.380–4.907, p < 0.0001 by log-rank test) estimated by Youden Index (523.6 ng/mL). Interpretation SIGLEC5 displays the hallmarks of an IC ligand, and plasma levels of sSIGLEC5 have been linked with increased mortality in septic patients.This work was supported by grants from Instituto de Salud Carlos III (ISCIII) and “Fondos FEDER” to ELC (PIE15/00065, PI18/00148, PI14/01234, PI21/00869), to PP (20859/PI/18) and to CdF (PI21/01178), and received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowaska-Curie grant agreement to KMH (No. 713673; “laCaixa”). R.L.-R. was supported by “Predoctotales de formación en Investigación” (PFIS) grant FI19/00334 and J.A.-O. by Sara Borrell grant CD21/00059 from ISCIII. The Vall d'Hebron University Hospital and Vall d’Hebron Research Institute were supported by Plan Nacional de I+D+i 2013–2016, the ISCIII and Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003)—co-financed by European Development Regional Fund “A way to achieve Europe”, and by the European Union’s Horizon 2020 Research and Innovation Program (JCRR, RF, JJGL, AF). Authors thank Emilio Llanos for his technical assistance

    Urinary Kininogen-1 and Retinol binding protein-4 respond to Acute Kidney Injury: Predictors of patient prognosis?

    Full text link
    Implementation of therapy for acute kidney injury (AKI) depends on successful prediction of individual patient prognosis. Clinical markers as serum creatinine (sCr) have limitations in sensitivity and early response. The aim of the study was to identify novel molecules in urine which show altered levels in response to AKI and investigate their value as predictors of recovery. Changes in the urinary proteome were here investigated in a cohort of 88 subjects (55 AKI patients and 33 healthy donors) grouped in discovery and validation independent cohorts. Patients'urine was collected at three time points: within the first 48 h after diagnosis(T1), at 7 days of follow-up(T2) and at discharge of Nephrology(T3). Differential gel electrophoresis was performed and data were confirmed by Western blot (WB), liquid chromatography/mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA). Retinol binding protein 4 (RBP4) and kininogen-1 (KNG1) were found significantly altered following AKI. RBP4 increased at T1, and progressively decreased towards normalization. Maintained decrease was observed for KNG1 from T1. Individual patient response along time revealed RBP4 responds to recovery earlier than sCr. In conclusion, KNG1 and RBP4 respond to AKI. By monitoring RBP4, patient's recovery can be anticipated pointing to a role of RBP4 in prognosis evaluation.Funding: from Instituto de Salud Carlos III: FIS PI11/01401, PI13/01873, FIS IF08/3667-1, CP09/00229, PI13/00047, PI10/00624, ISCIII-RETIC REDinREN RD012/0021. FEDER funds, Comunidad de Madrid/CIFRA S2010/BMD-2378, Programa Intensificación Actividad Investigadora (ISCIII/Agencia Laín-Entralgo/CM) to AO, IDCSalud (3371/002) and Fundación Conchita Rábago de Jiménez Díaz, Proteomic Facility from Universidad Complutense de Madrid-Fundación Parque Científico de Madrid (UCM-FPCM), Spain, a member of ProteoRed-ISCIII Network member of ProteoRed- ISCIII Networ

    Tenofovir Nephrotoxicity: 2011 Update

    Get PDF
    Tenofovir is an acyclic nucleotide analogue reverse-transcriptase inhibitor structurally similar to the nephrotoxic drugs adefovir and cidofovir. Tenofovir is widely used to treat HIV infection and approved for treatment of hepatitis B virus. Despite initial cell culture and clinical trials results supporting the renal safety of tenofovir, its clinical use is associated with a low, albeit significant, risk of kidney injury. Proximal tubular cell secretion of tenofovir explains the accumulation of the drug in these mitochondria-rich cells. Tenofovir nephrotoxicity is characterized by proximal tubular cell dysfunction that may be associated with acute kidney injury or chronic kidney disease. Withdrawal of the drug leads to improvement of analytical parameters that may be partial. Understanding the risk factors for nephrotoxicity and regular monitoring of proximal tubular dysfunction and serum creatinine in high-risk patients is required to minimize nephrotoxicity. Newer, structurally similar molecular derivatives that do not accumulate in proximal tubules are under study

    The role of PGC-1α and mitochondrial biogenesis in kidney diseases

    Full text link
    Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.Supported by ISCIII-FIS, FEDER funds, CP14/00133, PI16/02057, PI16/01900, PI18/01366, PI19/00588, PI19/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD016/0009, Sociedad Española de Nefrología, Fundacion Renal Iñigo Álvarez de Toledo (FRIAT), ISCIII Miguel Servet (A.B.S., M.D.S.-N.), ISCIII Sara Borrell (J.M.M.-M.), Comunidad de Madrid CIFRA2 B2017/BMD-3686 (M.F.-B. and D.M.-S.

    V-shaped pyranylidene/triphenylamine-based chromophores with enhanced photophysical, electrochemical and nonlinear optical properties

    Get PDF
    We report the synthesis and comprehensive study of two chromophores based on 4H-pyranylidene moiety as a part of the p-conjugated spacer. Triphenylamine (TPA) acts as donor and tricarbonitrile-based electron-accepting groups complete these V-shaped D-A-D architectures (A, acceptor; D, donor). Their electrochemical, photophysical and nonlinear optical properties are analyzed in detail by using a joint experimental and theoretical approach. The two chromophores exhibit near-infrared fluorescence, large Stokes shift, enhanced emission in tetrahydrofuran/water mixtures and good photostability. Additionally, the dimerization of triphenylamine groups to tetraphenylbenzidine (TPB) takes place upon electrochemical and chemical oxidation showing their peculiar electrochemical behavior and film formation capabilities. Interestingly, high molecular first hyperpolarizabilities and two-photon absorption cross-sections were found, highlighting their potential applications in electro-optical devices. Overall, our work demonstrates that these near-infrared (NIR) fluorescent chromophores are versatile materials with a myriad of applications ranging from optoelectronics to biological applications. © 2021 The Royal Society of Chemistry

    Tumor cell and immune cell profiles in primary human glioblastoma: Impact on patient outcome

    Get PDF
    © 2020 The Authors.The distribution and role of tumor-infiltrating leucocytes in glioblastoma (GBM) remain largely unknown. Here, we investigated the cellular composition of 55 primary (adult) GBM samples by flow cytometry and correlated the tumor immune profile with patient features at diagnosis and outcome. GBM single-cell suspensions were stained at diagnosis (n = 44) and recurrence following radiotherapy and chemotherapy (n = 11) with a panel of 8-color monoclonal antibody combinations for the identification and enumeration of (GFAPCD45) tumor and normal astrocytic cells, infiltrating myeloid cells —i.e. microglial and blood-derived tumor-associated macrophages (TAM), M1-like, and M2-like TAM, neutrophils. and myeloid-derived suppressor cells (MDSC)— and tumor-infiltrating lymphocytes (TIL) —i.e. CD3T-cells and their TCD4, TCD8, TCD4CD8, and (CD25CD127) regulatory (T-regs) subsets, (CD19CD20) B-cells, and (CD16) NK-cells—. Overall, GBM samples consisted of a major population (mean ± 1SD) of tumor and normal astrocytic cells (73% ± 16%) together with a significant but variable fraction of immune cells (24% ± 18%). Within myeloid cells, TAM predominated (13% ± 12%) including both microglial cells (10% ± 11%) and blood-derived macrophages (3% ± 5%), in addition to a smaller proportion of neutrophils (5% ± 9%) and MDSC (4% ± 8%). Lymphocytes were less represented and mostly included TCD4 (0.5% ± 0.7%) and TCD8 cells (0.6% ± 0.7%), together with lower numbers of TCD4CD8 T-cells (0.2% ± 0.4%), T-regs (0.1% ± 0.2%), B-lymphocytes (0.1% ± 0.2%) and NK-cells (0.05% ± 0.05%). Overall, three distinct immune profiles were identified: cases with a minor fraction of leucocytes, tumors with a predominance of TAM and neutrophils, and cases with mixed infiltration by TAM, neutrophils, and T-lymphocytes. Untreated GBM patients with mixed myeloid and lymphoid immune infiltrates showed a significantly shorter patient overall survival versus the other two groups, in the absence of gains of the EGFR gene (p = 0.02). Here we show that immune cell infiltrates are systematically present in GBM, with highly variable levels and immune profiles. Patients with mixed myeloid and T-lymphoid infiltrates showed a worse outcome.Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and fondos FEDER, Grant/Award Number: CB16/12/00400 and ISCIII PI16/0476; Consejería de Sanidad Junta de Castilla y León, Gerencia Regional de Salud, Spain, Grant/Award Number: GRS2049/A/1

    TNF Superfamily: A Growing Saga of Kidney Injury Modulators

    Get PDF
    Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF) and Fas ligand regulate renal cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses. TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCl21 and CCL19 expression through NF-kappaB inducing kinase (NIK-) dependent RelB/NF-kappaB2 complexes. In vivo TWEAK promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily cytokines, including multipronged approaches targeting several cytokines should be further explored

    Epigenetic modifiers as potential therapeutic targets in diabetic kidney disease

    Full text link
    Diabetic kidney disease is one of the fastest growing causes of death worldwide. Epigenetic regulators control gene expression and are potential therapeutic targets. There is functional interventional evidence for a role of DNA methylation and the histone post-translational modifications—histone methylation, acetylation and crotonylation—in the pathogenesis of kidney disease, including diabetic kidney disease. Readers of epigenetic marks, such as bromodomain and extra terminal (BET) proteins, are also therapeutic targets. Thus, the BD2 selective BET inhibitor apabetalone was the first epigenetic regulator to undergo phase-3 clinical trials in diabetic kidney disease with an endpoint of kidney function. The direct therapeutic modulation of epigenetic features is possible through pharmacological modulators of the specific enzymes involved and through the therapeutic use of the required substrates. Of further interest is the characterization of potential indirect effects of nephroprotective drugs on epigenetic regulation. Thus, SGLT2 inhibitors increase the circulating and tissue levels of β-hydroxybutyrate, a molecule that generates a specific histone modification, β-hydroxybutyrylation, which has been associated with the beneficial health effects of fasting. To what extent this impact on epigenetic regulation may underlie or contribute to the so-far unclear molecular mechanisms of cardio-and nephroprotection offered by SGLT2 inhibitors merits further in-depth studies.This research was funded by FIS/FEDER funds (PI15/00298, CP14/00133, PI16/01900, PI18/01386, PI18/0133, PI19/00588, PI19/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071), ISCIII-RETIC REDinREN RD016/0009), Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina B2017/BMD- 3686 CIFRA2-CM. Salary support: ISCIII Miguel Servet to ABS and MDS-N, ISCIII Sara Borrell to JM-MM, REDinREN RD016/0009 to MF-B, and MICIU to JG-M

    Lower Rydberg series of methane : A combined coupled cluster linear response and molecular quantum defect orbital calculation

    Get PDF
    Vertical excitation energies as well as related absolute photoabsorption oscillator strength data are very scarce in the literature for methane. In this study, we have characterized the three existing series of low-lying Rydberg states of CH4 by computing coupled cluster linear response (CCLR) vertical excitation energies together with oscillator strengths in the molecular-adapted quantum defect orbital formalism from a distorted Cs geometry selected on the basis of outer valence green function calculations. The present work provides a wide range of data of excitation energies and absolute oscillator strengths which correspond to the Rydberg series converging to the three lower ionization potential values of the distorted methane molecule, in energy regions for which experimentally measured data appear to be [email protected] [email protected] [email protected]
    corecore