39 research outputs found

    Introducción al comportamiento del fuego

    Get PDF
    En este documento describen, y conectan entre sí, aspectos básicos del comportamiento del fuego en los incendios forestales. También se hace referencia a diversas herramientas de predicción de utilidad para el manejo del fuego

    Novel approach to assessing residual biomass from pruning: A case study in Atlantic Pinus pinaster Ait. timber forests

    Get PDF
    Forestry residual biomass from pruning operations is an important, though little studied, potential resource. Residues normally remain in the stand, since tools for their accurate quantification do not exist and it has no particular end use. Traditional tree biomass estimation models consider the whole-tree, but estimating pruned biomass requires the development of more specific equations. This work provides a modelling approach for assessing biomass along the stem and the corresponding residual biomass from forest pruning, and quantitative results from different pruning intensities in Pinus pinaster Ait. are presented. Two types of models were considered: allometric biomass equations (whole-tree) and biomass ratio equations (tree by height along the stem), and the 2-parameter Weibull distribution function resulted in the best characterization. Diameter at breast height was the best explanatory variable in all equations, and model accuracy increased when models were combined with total tree height for the tree stem and thicker branches, or with crown ratio for the remaining tree crown components. This study provides a powerful tool to estimate residual pruned biomass, enabling its better management as a valuable source of bioenergy, as well as the importance in nutrient balance and fire risk which it plays in a sustainable forestry productionWe thank the Forest Services of the Government of the Principality of Asturias for access to the forests used in this study and for financial support. Thank you to people from CETEMAS (L. González, M. García, P. Vallejo) and SERIDA (J.C. Hernández) for their participation in the fieldwork. Thank you to Ronnie Lendrum for reviewing the English and FORRISK project (Interreg IV B SUDOE 2007–2013) for its support during data analysis. Andrea Hevia was financially supported during fieldwork and data analysis by the Spanish Ministry of Education and Science through the FPU scholarship program (Reference AP2006-03890)S

    Assessing the effect of pruning and thinning on crown fire hazard in young Atlantic maritime pine forests

    Get PDF
    Management of fuel to minimize crown fire hazard is a key challenge in Atlantic forests, particularly for pine species. However, a better understanding of effectiveness of silvicultural treatments, especially forest pruning, for hazard reduction is required. Here we evaluate pruning and thinning as two essential silvicultural treatments for timber pine forests. Data came from a network of permanent plots of young maritime pine stands in northwestern Spain. Vertical profiles of canopy bulk density were estimated for field data and simulated scenarios of pruning and thinning using individual tree biomass equations. Analyses of variance were conducted to establish the influence of each silvicultural treatment on canopy fuel variables. Results confirm the important role of both pruning and thinning in the mitigation of crown fire hazard, and that the effectiveness of the treatments is related to their intensity. Finally, models to directly estimate the vertical profile of canopy bulk density (CBD) were fitted using the Weibull probability density function and usual stand variables as regressors. The models developed include variables sensitive to pruning and thinning interventions and provide useful information to prevent extreme fire behavior through effective silvicultureWe thank the Forest Services of the Government of the Principality of Asturias for financial support and access to the forests used in this study. Funding during data analysis was provided by projects SCALyFOR (AGL2013-46028-R), GEPRIF (RTA2014-00011-C06-04), PLURIFOR (SOE1/P4/F0112 Interreg SUDOE) and FORRISK (SOE3/P2/F523 Interreg IV B SUDOE). Andrea Hevia was financially supported during fieldwork and data analysis by the Spanish Ministry of Education and Science through the FPU scholarship program (Reference AP2006-03890)S

    Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning

    Get PDF
    Forest fuel loads and structural characteristics strongly affect fire behavior, regulating the rate of spread, fireline intensity, and flame length. Accurate fuel characterization, including disaggregation of the fuel load by size classes, is therefore essential to obtain reliable predictions from fire behavior simulators and to support decision-making in fuel management and fire hazard prediction. A total of 55 sample plots of four of the main non-tree covered shrub communities in NW Spain were non-destructively sampled to estimate litter depth and shrub cover and height for species. Fuel loads were estimated from species-specific equations. Moreover, a single terrestrial laser scanning (TLS) scan was collected in each sample plot and features related to the vertical and horizontal distribution of the cloud points were calculated. Two alternative approaches for estimating size-disaggregated fuel loads and live/dead fractions from TLS data were compared: (i) a two-steps indirect estimation approach (IE) based on fitting three equations to estimate shrub height and cover and litter depth from TLS data and then use those estimates as inputs of the existing species-specific fuel load equations by size fractions based on these three variables; and (ii) a direct estimation approach (DE), consisting of fitting seven equations, one for each fuel fraction, to relate the fuel load estimates to TLS data. Overall, the direct approach produced more balanced goodness-of-fit statistics for the seven fractions considered jointly, suggesting that it performed better than the indirect approach, with equations explaining more than 80% of the observed variability for all species and fractions, except the litter loadsThis research was funded by the projects GEPRIF (RTA2014-00011-c06-04) and VIS4FIRE (RTA 2017-0042-C05-05) of the Spanish Ministry of Economy, Industry, and CompetitivenessS

    Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data

    Get PDF
    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus lowdensity airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazardWe are grateful to the Galician Government and European Social Fund (Official Journal of Galicia—DOG n° 52, 17/03/2014, p. 11343, exp: POS-A/2013/049) for financing the postdoctoral research stays of Dr Eduardo González-Ferreiro at different institutions. Copyright of LiDAR data, Instituto Geográfico Nacional-Xunta de GaliciaS

    Modelling aboveground biomass and fuel load components at stand level in shrub communities in NW Spain

    Get PDF
    Shrub-dominated ecosystems cover large areas globally and play essential roles in ecological processes. Aboveground biomass expressed on an area basis (AGB) is central to many of the ecological processes and services provided by shrublands and is important as the main fuel source for wildfires. Hence, its accurate estimation in shrublands is crucial for ecologists and land managers. This is especially relevant in fire-prone regions such as NW Spain, where shrublands are an important part of the landscape, providing multiple services, but are severely impacted by wildfires. Although biomass models are available for numerous shrub species at the individual plant level, operational models based directly on easily measured shrub stand attributes are scarce. In this study, equations for estimating AGB and loads of different fuel components by size and condition (live and dead) from stand biometric variables were developed for the nine most prevalent shrub communities in NW Spain. Non-linear iterative seemingly unrelated regression was used to fit compatible systems of equations for estimating fuel loads, with shrub stand height and cover and litter depth as predictors for individual shrub communities and all data combined. In general, the goodness-of-fit statistics indicated that the estimates were reasonably accurate for all communities (grouped and ungrouped). The best results were obtained for AGB and total fuel load, including litter, whereas the poorest results were obtained for standing live and dead fine fuel load. Model performance was reduced when height was the only independent variable, although the reduction was small for most fuel categories, except litter load for which the variability was adequately explained by the litter depth. These results illustrate the feasibility of the stand level approach for constructing operational models of shrub fuel load that are accurate for most of fuel components, while also highlighting the ongoing challenges in live and dead fine fuel modelling. The equations developed represent an appreciable advance in shrubland biomass assessment in the region and areas with similar characteristics and may be instrumental in generating fuel maps, fire management improvement and better C storage assessment by vegetation, among other many usesS

    Near Real-Time Automated Early Mapping of the Perimeter of Large Forest Fires from the Aggregation of VIIRS and MODIS Active Fires in Mexico

    Get PDF
    In contrast with current operational products of burned area, which are generally available one month after the fire, active fires are readily available, with potential application for early evaluation of approximate fire perimeters to support fire management decision making in near real time. While previous coarse-scale studies have focused on relating the number of active fires to a burned area, some local-scale studies have proposed the spatial aggregation of active fires to directly obtain early estimate perimeters from active fires. Nevertheless, further analysis of this latter technique, including the definition of aggregation distance and large-scale testing, is still required. There is a need for studies that evaluate the potential of active fire aggregation for rapid initial fire perimeter delineation, particularly taking advantage of the improved spatial resolution of the Visible Infrared Imaging Radiometer (VIIRS) 375 m, over large areas and long periods of study. The current study tested the use of convex hull algorithms for deriving coarse-scale perimeters from Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) active fire detections, compared against the mapped perimeter of the MODIS collection 6 (MCD64A1) burned area. We analyzed the effect of aggregation distance (750, 1000, 1125 and 1500 m) on the relationships of active fire perimeters with MCD64A1, for both individual fire perimeter prediction and total burned area estimation, for the period 2012–2108 in Mexico. The aggregation of active fire detections from MODIS and VIIRS demonstrated a potential to offer coarse-scale early estimates of the perimeters of large fires, which can be available to support fire monitoring and management in near real time. Total burned area predicted from aggregated active fires followed the same temporal behavior as the standard MCD64A1 burned area, with potential to also account for the role of smaller fires detected by the thermal anomalies. The proposed methodology, based on easily available algorithms of point aggregation, is susceptible to be utilized both for near real-time and historical fire perimeter evaluation elsewhere. Future studies might test active fires aggregation between regions or biomes with contrasting fuel characteristics and human activity patterns against medium resolution (e.g., Landsat and Sentinel) fire perimeters. Furthermore, coarse-scale active fire perimeters might be utilized to locate areas where such higher-resolution imagery can be downloaded to improve the evaluation of fire extent and impactFunding for this study was provided by CONAFOR/CONACYT Projects “CO2-2014-3-252620” and “CO-2018-2-A3-S-131553” for the development and enhancement of a Forest Fire Danger Prediction System for Mexico, funded by the Sectorial Fund for forest research, development and technological innovation “Fondo Sectorial para la investigación, el desarrollo y la innovación tecnológica forestal”S

    Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003-2014

    Get PDF
    Background: Understanding the temporal patterns of fire occurrence and their relationships with fuel dryness is key to sound fire management, especially under increasing global warming. At present, no system for prediction of fire occurrence risk based on fuel dryness conditions is available in Mexico. As part of an ongoing national-scale project, we developed an operational fire risk mapping tool based on satellite and weather information. Results: We demonstrated how differing monthly temporal trends in a fuel greenness index, dead ratio (DR), and fire density (FDI) can be clearly differentiated by vegetation type and region for the whole country, using MODIS satellite observations for the period 2003 to 2014. We tested linear and non-linear models, including temporal autocorrelation terms, for prediction of FDI from DR for a total of 28 combinations of vegetation types and regions. In addition, we developed seasonal autoregressive integrated moving average (ARIMA) models for forecasting DR values based on the last observed values. Most ARIMA models showed values of the adjusted coefficient of determination (R2 adj) above 0.7 to 0.8, suggesting potential to forecast fuel dryness and fire occurrence risk conditions. The best fitted models explained more than 70% of the observed FDI variation in the relation between monthly DR and fire density. Conclusion: These results suggest that there is potential for the DR index to be incorporated in future fire risk operational tools. However, some vegetation types and regions show lower correlations between DR and observed fire density, suggesting that other variables, such as distance and timing of agricultural burn, deserve attention in future studiesAntecedentes: Una adecuada planificación del manejo del fuego requiere de la comprensión de los patrones temporales de humedad del combustible y su influencia en el riesgo de incendio, particularmente bajo un escenario de calentamiento global. En la actualidad en México no existe ningún sistema operacional para la predicción del riesgo de incendio en base al grado de estrés hídrico de los combustibles. Un proyecto de investigación nacional actualmente en funcionamiento, tiene como objetivo el desarrollo de un sistema operacional de riesgo y peligro de incendio en base a información meteorológica y de satélite para México. Este estudio pertenece al citado proyecto Resultados: Se observaron en el país distintas tendencias temporales en un índice de estrés hídrico de los combustibles basado en imágenes MODIS, el índice “dead ratio” (DR), y en las tendencias temporales de un ìndice de densidad de incendios (FDI), en distintos tipos de vegetación y regiones del país. Se evaluaron varios modelos lineales y potenciales, incluyendo términos para la consideración de la autocorrelación temporal, para la predicción de la densidad de incendios a partir del índice DR para un total de 28 tipos de vegetación y regiones. Se desarrollaron además modelos estacionales autoregresivos de media móvil (ARIMA en inglés) para el pronóstico del índice DR a partir de los últimos valores observados. La mayoría de los modelos ARIMA desarrollados mostraron valores del coeficiente de determinación ajustado (R2 adj) por encima de 0.7 to 0.8, sugiriendo potencial para ser empleados para un pronóstico del estrés hídrico de los combustibles y las condiciones de riesgo de ocurrencia de incendio. Con respecto a los modelos que relacionan los valores mensuales de DR con FDI, la mayoría de ellos explicaron más del 70% de la variabilidad observada en FDI. Conclusiones: Los resultados sugirieron potencial del índice DR para ser incluido en futuras herramientas operacionales para determinar el riesgo de incendio. En algunos tipos de vegetación y regiones se obtuvieron correlaciones más reducidas entre el índice DR y los valores observados de densidad de incendios, sugiriendo que el papel de otras variables tales como la distancia y el patrón temporal de quemas agrícolas debería ser explorado en futuros estudiosFunding for this work was provided by CONAFOR-CONACYT Project 252620 “Development of a Fire Danger System for Mexico.” This work was also cofinanced by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria and European Social Fund (Dr. E. Jiménez grant)S

    Introducción al comportamiento del fuego

    No full text
    En este documento describen, y conectan entre sí, aspectos básicos del comportamiento del fuego en los incendios forestales. También se hace referencia a diversas herramientas de predicción de utilidad para el manejo del fuego

    La predicción de la humedad en los restos forestales combustibles : aplicación a masas arboladas en Galicia

    Full text link
    Se estudia la variación y la predicción de la humedad de los combustibles forestales muertos en masas de pino pinastez y radiata, realizando ensayos en diversas parcelas de monte y en pequeños laboratorios meteorológicos instalados en ellos. Se analiza la influencia de la meteorología y de aspectos fisiográficos en la variación de la humedad de los combustibles. Se proponen diversos modelos matemáticos de predicción de la humedad a partir de los diferentes factores que inciden en la variación de la humedad de los combustibles
    corecore