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Abstract

The fuel complex variables canopy bulk density and canopy base height are often used to

predict crown fire initiation and spread. Direct measurement of these variables is impracti-

cal, and they are usually estimated indirectly by modelling. Recent advances in predicting

crown fire behaviour require accurate estimates of the complete vertical distribution of can-

opy fuels. The objectives of the present study were to model the vertical profile of available

canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-

density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the

canopy fuel load was modelled using the Weibull probability density function. In a second

step, two different systems of models were fitted to estimate the canopy variables defining

the vertical distributions; the first system related these variables to stand variables obtained

in a field inventory, and the second system related the canopy variables to airborne laser

scanning metrics. The models of each system were fitted simultaneously to compensate the

effects of the inherent cross-model correlation between the canopy variables. Heterosce-

dasticity was also analyzed, but no correction in the fitting process was necessary. The esti-

mated canopy fuel load profiles from field variables explained 84% and 86% of the variation

in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated

canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the

same species. The proposed models can be used to assess the effectiveness of different

forest management alternatives for reducing crown fire hazard.
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Introduction

Accurate knowledge of fuel characteristics has been shown to be critical in forest fire manage-

ment, as fuel constitutes a primary component of fire risk [1,2]. Moreover, accurate fuel map-

ping is required for using fire behaviour models and simulation systems, which are essential

for establishing fuel treatment priorities and evaluating the effectiveness of fuel management

actions [3].

One of the current main objectives of fuel management in conifer forests is the mitigation

of crown fire hazard. Crown fires are usually intense and spread rapidly, which makes them

difficult and dangerous to suppress. They can cause severe economic damage and ecological

disruption [4].

Assessing the risk of crown fire initiation and spread is a key element in gauging fire behav-

iour. Both crown fire initiation and spread are widely recognised to be determined by struc-

tural characteristics of the canopy fuel complex such as available canopy fuel load (CFL),

canopy bulk density (CBD) and canopy base height (CBH) [4]. CFL is defined as the mass of

available canopy fuel per unit ground area; CBD indicates the amount of available fuel per vol-

ume unit in the aerial layer, and CBH is the lowest height above ground level at which there is

sufficient available canopy fuel to propagate fire vertically through the canopy [2,5]. Fire

behavior simulation systems that assess crown fire potential thus require accurate estimates of

these variables. For modelling purposes, needles and fine twigs are commonly considered

available fuel because these tree biomass components are usually consumed within the flaming

front of a crown fire [6].

Two main approaches can be used to estimate CBD and CBH [2,7,8]. The simplest approach

is based on the assumption that available canopy fuel is homogeneously distributed through-

out the aerial layer of the stand. CFL is thus estimated by dividing the total available biomass in

the canopy by the stand surface area; CBD is estimated by dividing CFL by the canopy depth,

and CBH is estimated as the average crown base height of all trees in the stand. This approach

is consistent with the criteria for crown fire initiation and spread proposed by Van Wagner [9]

and is integrated in most empirical crown fire models. However, important advances are

expected to be made in modelling crown fire behaviour in the future. Therefore, estimation of

the vertical distribution of canopy fuels should focus on a more realistic and complex approach

based on evidence that the fuel distribution in each tree crown affects the general fuel distribu-

tion in the stand [7]. Such a realistic approach assumes that the crown of each tree in the stand

has a particular shape that defines the available fuel distribution along the crown. The distribu-

tion of the available fuel in the stand is predicted by taking into account the shape of each tree

and the height at which the crown starts and ends. CBD and CBH are subsequently estimated

from the predicted vertical distribution according to certain criteria. CBD is usually estimated

as the maximum bulk density in a vertical profile that shows the distribution of this variable

from the ground to the top of the tallest tree in the stand, and CBH as the height at which a cer-

tain bulk density value is reached in that profile [2]. Different bulk density values were arbi-

trarily proposed for estimating CBH: 0.037 kg m-3 [5], 0.012 kg m-3 [10] and 0.067 kg m-3 [11].

This option enables us to take into account information provided by Airborne Laser Scanning

(ALS) data, which can be used to predict the forest structure in three dimensions.

In Spain, the only information currently available regarding canopy fuel complex character-

istics at national and regional scales is that provided by the National Forest Inventory (NFI).

The NFI is based on a systematic sampling design (1x1 km sample grid) with permanent plots

and previous forest stratification by photo-interpretation. However, this type of inventory

does not yield full spatial coverage and often takes several years to complete [12]. For example,

in the region of Galicia (north-west Spain), the field work involved in the fourth NFI (NFI-4)
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lasted about 11 months, and data processing took approximately 3 years [13]. Moreover, the

NFI is costly and the information provided could become quickly outdated, especially for fast

growing species.

ALS has proven to be a useful source of auxiliary data for describing the canopy fuel stratum

because it can provide information that can be used to predict the three-dimensional structure

of vegetation and other forest features at different scales [14–16]. Research aimed at character-

izing forest resources by use of commercial ALS sensors operating at moderate to low spatially

dense sampling (up to 0.5 pulses m-2) has focused on the stand-level approach, which often

establishes empirical relationships between metrics estimated from ALS data and field-

measured stand variables. Specific stand-level studies that describe the canopy fuel stratum are

scarce and often restricted to a few tree species and small sites [17–23]. Some ALS studies have

also attempted to predict diameter probability density function parameters; for example,

Gobakken and Næsset [24,25] used the Weibull distribution to predict diameter distributions

from laser scanner data; Breidenbach et al. [26] applied a generalized linear model (GLM) to

estimate the shape and scale parameters of the Weibull distribution by using ALS metrics as

predictors; and Thomas et al. [27] applied ALS-based Weibull parameter prediction in differ-

ent types of forests including coniferous, hardwoods and mixed woods.

Spain now has a wide coverage of coarse resolution (0.5 first returns m-2), small-footprint

ALS data, thanks to the Plan Nacional de Ortofotografía Aérea 2008–2015 (PNOA 2008–2015),

which has carried out 5 annual flight surveys covering an area of 406,550 km2 (slightly more

than 80% of the surface of Spain). The main aim is to produce fine resolution Digital Elevation

Models (DEM) and to control the quality of PNOA conventional photogrammetric products.

Although PNOA ALS data were not originally conceived for the purpose of characterizing for-

est vegetation, it is expected that wall-to-wall, georeferenced point clouds could provide accu-

rate estimates of the available canopy fuel profile.

In this study, we aimed to model the vertical distribution of the available canopy fuel load in

Pinus pinaster Ait. and Pinus radiata D. Don stands in Galicia (north-west Spain), by combining

extensive (NFI) field and countrywide ALS data sets. Although the study focuses on two species,

the method could be applied to other species when new data acquisitions become available.

Two different set of models were used to predict the vertical distributions of available canopy

fuel loads and were fitted using different sets of predictors: the first based on stand variables cal-

culated from field measurements in the NFI plots and the second based on ALS metrics.

Material and methods

Study area

The region of Galicia (north-west Spain) is characterized by rugged orography and an oceanic

climate with mild temperatures, low thermic oscillation between winter and summer and fre-

quent rainfall. Galicia is one of the most important regions in Spain in terms of forestry pro-

duction. Around 30% of the 1.4 million hectares of tree-covered land comprises pure and

even-aged pine stands, mainly maritime pine (Pinus pinaster) (271,281 ha) and radiata pine

(Pinus radiata) (96,177 ha), and more than 68 million cubic metres of standing timber [13]

provide 51% and 27% of respectively the conifer and total annual harvest volume in Spain

[28]. Fig 1 shows the location of Galicia in Spain and Europe, and the spatial distribution of

pure P. pinaster and P. radiata NFI plots.

Pine stands are among the most flammable types of vegetation, particularly when they are

not thinned or pruned and carry large surface fuel loads [29,30]. This, together with the low

moisture contents reached in the litter in dry summer periods [31], has led to wildfires (espe-

cially crown fires) becoming of ecological, economic and social concern in Galicia.

Vertical distribution of CFL predicted from ALS data
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Field data

The field data used for this study were obtained from the NFI-4 carried out in Galicia [13]

(data available at http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-

naturaleza/; last accessed on 7-8-2016). The NFI project maintains a network of sample plots

throughout Spain, which are aimed at providing continuously updated information on the sta-

tus of nationwide forest resources, including timber volumes and species composition [32].

Sample plots are established at the intersections of a 1-km x 1-km UTM grid and consist of

four circular concentric subplots of radii 5, 10, 15 and 25 m (Fig 2). Diameter at breast height

(d) and total tree height (h) are measured in trees selected on the basis of their diameter and

distance to the plot centre (d� 42.5 cm for the 25-m radius; d� 22.5 cm for the 15-m radius;

d� 12.5 cm for the 10-m radius and d� 7.5 cm for the 5-m radius). The number of trees of

diameter 2.5–7.5 cm (saplings) is also recorded in the 5-m radius subplot. Diameter at breast

height is measured to the nearest 0.1 cm with graduated trees calipers in two perpendicular

directions. Total tree height is measured to the nearest 0.1 m with a hypsometer. The following

stand variables were calculated from the tree variable measurements, by using tree expansion

factors: number of stems per hectare (N), quadratic mean diameter (dg), stand basal area (G),

mean stand height (�h) and dominant height (H, defined as the mean height of the 100 thickest

Fig 1. Location of the study area and spatial distribution of the NFI-4 plots where P. pinaster and P. radiata were dominant.

https://doi.org/10.1371/journal.pone.0176114.g001

Vertical distribution of CFL predicted from ALS data

PLOS ONE | https://doi.org/10.1371/journal.pone.0176114 April 27, 2017 4 / 21

http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/
http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/
https://doi.org/10.1371/journal.pone.0176114.g001
https://doi.org/10.1371/journal.pone.0176114


trees per hectare). These variables were used as predictors for statistical analyses. The tree

expansion factor adjusts to a per hectare basis for the ith tree; it expresses the number of trees

per hectare that each selected tree represents in the inventory, according to the subplot radius.

A total of 8515 sample plots were measured in the NFI-4 in Galicia, which corresponds to

approximately one sample location per 166 ha of afforested land.

All plots in which P. pinaster or P. radiata were dominant (more than 90% of trees and

more than 90% of total stand basal area) were selected. In addition, plots in which dead trees

accounted for more than 10% of basal area were rejected.

ALS data

ALS data were acquired under the direction of the Spanish Ministerio de Fomento (Dirección
General del Instituto Geográfico Nacional and Centro Nacional de Información Geográfica). The

data were obtained for the PNOA project, in autumn 2009 in eastern Galicia (provinces of

Lugo and Ourense) and in autumn 2010 in western Galicia (provinces of A Coruña and Ponte-

vedra). The data were acquired with a RIEGL LMS-Q680 sensor, installed in a fixed wing aerial

platform, operated at 1064 nm, a pulse repetition rate of 70 kHz, a scan frequency of 46 Hz, a

maximum scan angle of ±30˚, a maximum beam divergence of 0.5 mrad, an average flying

height of 1300 m above sea level, and a minimum swath overlap of 15%. Square ALS blocks of

2 km side and covering the whole region of Galicia were obtained from the CNIG computer

server (data available at http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.

Fig 2. A typical sample plot used in the fourth National Forest Inventory (NFI-4). Grey circles represent

trees selected on the basis of tree diameter and the distance to the plot centre.

https://doi.org/10.1371/journal.pone.0176114.g002
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do?codFamilia=LIDAR; last accessed on 5-27-2016). A maximum of 4 returns per pulse were

registered, with a theoretical laser pulse density required for the PNOA project of 0.5 first

returns m-2.

Extraction of ALS metrics. ALS metrics are descriptive structural statistics calculated

from the normalized height of the ALS data cloud (NHD) and processing of raw ALS data is

necessary to obtain these metrics. We clipped the ALS cloud within the limit of buffer areas of

radius 30 m (25 m of NFI plot plus a buffer of 5 m) and then each cloud was saved as an inde-

pendent ALS file. We buffered all the selected NFI-4 plots by 5 m to avoid errors (especially

near of the plot boundaries) in the subsequent height normalization processes. After that, the

outliers were removed considering a window size of 100 m and a maximum and minimum

ellipsoidal height bound of ± 5.0�Std. dev. A filtering algorithm (adapted from [33]), based on

linear prediction [34], was used to extract ground returns from the ALS point cloud. All

returns were used in this process, the cell size was set to 2 m (based on available ALS data den-

sity) and the other parameters (a:1.0; b:4.0; g:-2.5; w:2.5; iterations:5) were obtained from Bar-

reiro-Fernández et al. [35], as these performed well with a variety of land cover, forest types

and slopes. Then, a 2 m cell size DEM grid was generated by estimating the elevation of each

grid cell from the average elevation of all points within the cell; if the cell does not contain any

points, it is filled by interpolation from the neighbouring cells. In the following step, the nor-

malized ALS point cloud was obtained by subtraction of the ellipsoidal height of the DEM

from the ellipsoidal height of each ALS return; returns below a normalized height of 0 m were

excluded. The normalized ALS point cloud within the limits of each field plot (which were pre-

viously stored as polygons in shapefiles) were clipped, and an independent file for each plot of

25 m radius was created. Finally, height and canopy cover metrics of the clipped and normal-

ized point clouds were estimated using all returns. The minimum height threshold (MHT),

which is commonly specified as the lower boundary for calculating height metrics (central ten-

dency, dispersion, shape and percentile statistics), was established at 1.5 m. The height break

threshold (HBT), which is the limit for separating the point cloud data into two sets to separate

canopy returns from the under canopy returns, in order to estimate canopy cover metrics, was

established as 4 m (based on field observation). A new filter was applied to remove any remain-

ing outliers; only returns with normalized heights between 0–60 m were included in the analy-

sis, after considering the highest tree apexes observed in the field. In total, 38 metrics widely

used to estimate variables related to canopy cover and height distribution [23,36] were

extracted from ALS pulses and used as predictors in the statistical analysis. The ALS metrics

and the corresponding descriptions for height distribution and canopy cover are summarised

in Table 1. Note that all variables were computed from all ALS returns in the database, i.e. all

returns per laser pulse.

Quality control and plot selection

The plot positioning procedures used in the NFI-4 were applied by using standard GPS

equipment; the plot coordinates therefore had an expected average accuracy of approximately

3–5 m. Gobakken and Næsset [37] observed that the use of larger plot sizes (300–400 m2) com-

pensates for errors in positioning sample plots for estimating biophysical properties derived

from ALS data. The size of the sample plot used in the NFI is around 1964 m2; for positioning

errors of 5 and 10 m (much larger than the assumed error), the overlapping areas between a

plot in true position and a plot located in an altered position were 84.3 and 74.7%, respectively.

Moreover, the precision of the ALS estimates tends to be less sensitive to positioning errors in

even-aged plots (as in the present study) and dense forests [37]; therefore, only plots with a

crown projection area greater than 90% were selected. The final number of sample plots was

Vertical distribution of CFL predicted from ALS data
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646 (512 P. pinaster and 134 P. radiata plots). In Galicia, the NFI-4 measurements were made

between 4 and 11 months before ALS measurements. Some of the plots may have been thinned

or cropped during this interval, and the ALS metrics would therefore not reflect the stand

structure of the plots on the measurement date. In order to prevent errors in the subsequent

modelling process, we tried to remove all plots that had undergone silvicultural treatments

during the interval between measurements. Visiting all NFI inventory plots is very expensive

and time-consuming and was deemed unfeasible. Visualization of ALS data was also ruled out

as a means of plot selection because it does not guarantee detection of all disturbed plots dur-

ing this interval. Finally, the following two (rejection) criteria were used in sample plots selec-

tion: 1) all sample plots with a percentage of first returns above 2 m less than 80% were

rejected, and 2) plots for which the field-measured dominant height (H) and ALS-derived 99th

height percentile (h99) differed by more than 3 times the root mean square error (RMSE) of a

pre-existing model for the species and study area were rejected. This model was fitted from a

network of 25 permanent plots installed in pine stands through Galicia and related the field-

Table 1. Potential explanatory variables related to height distribution and canopy cover.

Variables related to height

distribution (m)

Description

hmax maximum

hmean mean

hmode mode

hmedian median

hSD standard deviation

hCV coefficient of variation

hskw skewness

hkurt kurtosis

hID interquartile distance

hAAD average absolute deviation

hMADmedian median of the absolute deviations from the overall median

hMADmode mode of the absolute deviations from the overall mode

hL1, hL2,. . ., hL4 L-moments

hLskw L-moment of skewness

hLkur L-moment of kurtosis

h05, h10, h20,. . ., h90, h95, h99 percentiles

h25 and h75 first and third quartiles

Variables related to canopy

cover (%)

Variables related with height (i)

Description

PFRAhmean ratio of the number of the first laser returns above hmean to the number of

first laser returns for each plot

PFRAhmode ratio of the number of the first laser returns above hmode to the number of

first returns for each plot

PARAhmean ratio of the number of the all laser returns above hmean to the number of all

laser returns for each plot

PARAhmode ratio of the number of the all laser returns above hmode to the number of all

laser returns for each plot

PFRA4 ratio of the number of the first laser returns above 4 m height to the total

number of first laser returns for each plot

PARA4 ratio of the number of the all laser returns above 4 m height to the total

number of first laser returns for each plot

https://doi.org/10.1371/journal.pone.0176114.t001
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measured H to the ALS metric h99 (for more details, see [23]).

Ĥ ¼ 1:06040 � h99 R2 ¼ 0:9943; RMSE ¼ 1:826m ð1Þ

Taking the second criterion into account, plots with absolute differences between field-

measured H and ALS-derived h99 larger than 5.48 m were disregarded for further analysis.

Under these decision-making criteria, the number of plots selected was reduced from 646 to

554 (436 for P. pinaster and 118 for P. radiata). The mean, maximum, minimum values and

standard deviation for the main tree and stand variables for both species are shown in Table 2.

Vertical distribution of available canopy fuel estimated from field data

The vertical canopy fuel profiles were constructed by sectioning all trees of each plot in 0.3-m

horizontal layers from the ground to the apex of the tallest tree, according to Sando and Wick

[5]. The values of available fuel load for these layers were predicted for each selected sample

plot by combining estimates from individual-tree crown profile models and from a system of

biomass models.

The crown architecture of each tree was estimated using the crown profile systems devel-

oped for radiata pine and maritime pine by [38] and [39], respectively. These systems include

two models: one for the upper crown of the tree (above the maximum crown radius) and

another for the lower crown (below the maximum crown radius). The input variables for these

models are d, h, G, H, t and S (t is the stand age (years) and S is the site index, estimated as the

dominant height of the stand at a reference age of 20 years). The outputs of the system are the

individual crown base height (cbh), the crown length (cl), and the crown radius (cr) at different

points along the crown.

In the present study, we first estimated the upper and lower crown radii for 0.3-m layers

above ground for each tree of the sample plots. We then predicted the volume of the ith crown

section (crVi, m3) using the Smalian’s approximation for the volume of a frustum of a second

degree paraboloid, as follows:

crVi ¼
p � ðcrup2

i
þ crlow2

i Þ

2
� 0:3 ð2Þ

where crupi is the upper and crlowi the lower crown radius (m) of the ith layer (0.3 m thickness).

The available fuel load of each crown section was estimated by assuming that the fine bio-

mass is distributed vertically according to the vertical distribution of the crown volume.

Table 2. Descriptive statistics for the main tree and stand variables corresponding to the sample plots used in this study. Std. Dev., standard devia-

tion; d, tree diameter; h, total tree height; cl, crown length (defined as the distance from the crown base to the tree top); N, stand density; dg, quadratic mean

diameter; G, stand basal area and H, dominant height (estimated as the mean height of the 100 thickest trees per ha).

Statistics d

(cm)

h

(m)

cl

(m)

N

(stems ha-1)

dg

(cm)

G

(m2ha-1)

H

(m)

Pinus pinaster

(n = 436)

Minimum 7.50 1.50 0.10 159 4.33 3.19 6.10

Maximum 92.00 45.80 23.70 4615 53.47 83.83 28.75

Mean 27.87 15.90 6.28 911 19.69 21.88 15.09

Std. Dev. 12.70 5.94 2.91 735.02 8.30 14.59 5.66

Pinus radiata

(n = 118)

Minimum 7.50 1.30 0.60 213 4.57 6.52 7.60

Maximum 107.00 39.30 23.30 3191 84.72 78.28 30.37

Mean 26.58 17.35 8.13 784 21.45 22.55 16.98

Std. Dev. 11.28 6.20 3.86 532.86 9.86 13.40 5.70

https://doi.org/10.1371/journal.pone.0176114.t002
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The compatible systems of tree biomass models developed for maritime pine and radiata

pine in Galicia [40] were used to estimate the available fuel for each tree as the sum of needles

and twigs (0.6-cm maximum butt diameter). These systems require that measurements of d
and h are available for each tree.

The vertical profile of available CFL for each plot was estimated by summing the available

fuel weight in 0.3-m vertical layers across all trees and dividing by the plot area. The minimum

canopy base height (mCBH) was defined as the height at the lower limit of the first 0.3-m layer

with a value of CFL greater than zero.

A two-parameter Weibull probability density function was used to characterize the vertical

profiles of available CFL. The Weibull function has previously been used in ALS-based studies

for estimating diameter distributions (e.g. [24–27]):

CFLi ¼ CFL
a2

a1

� �
CLi � mCBH

a1

� �a2 � 1

e

CLi � mCBH
a1

� �a2

CFLreli ¼
CFLi

CFL

ð3Þ

where CFLi is the canopy fuel load for the layer i (kg m-2); CFLreli is the ratio between the avail-

able CFL of the layer i and the total CFL; CFL is the total canopy fuel load (kg m-2); CLi is the

canopy length for the layer i (m), defined as the distance from mCBH to the upper limit of the

0.3-m layer (m); and a1 and a2 are the scale and shape parameters of the Weibull function,

respectively. The Weibull parameters a1 and a2 were estimated using the first (m1) and the sec-

ond (m2) moments of the relative CFL distribution (CFLrel) [41]:

m2 ¼
ðm1 � mCBHÞ2

G2 1þ 1

a2

h i � G 1þ
2

a2

� �

� G2 1þ
1

a2

� �� �

ð4Þ

a1 ¼
m1 � mCBH

G 1þ 1

a2

h i ð5Þ

where m1 ¼
Xnum: layers

i¼1

CLi � CFLreli; m2 ¼
Xnum: layers

i¼1

CLi � CFLrel
2

i �
Xnum: layers

i¼1

CLi � CFLreli

 !2

; Γ is

the Gamma function. Eq 4 can be resolved iteratively for parameter a2, and parameter a1 is

then predicted using Eq 5.

Modelling the vertical distribution of available canopy fuel

The vertical profiles of available canopy fuel at stand level can be estimated from ALS variables

by fitting four models for each species to estimate (i) the total canopy fuel load (CFL), (ii) the

minimum canopy base height (mCBH), (iii) the scale parameter of the Weibull function (a1),

and (iv) the shape parameter of the Weibull function (a2). The Weibull parameters (a1 and a2)

can be directly related to ALS variables or indirectly estimated by relating the first and the sec-

ond moments of the relative CFL distribution to the ALS metrics and then using Eqs 4 and 5

to estimate the values.

Vertical distribution of CFL predicted from ALS data
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Linear (Eq 6) and (multiplicative) power (Eq 7) models were used to fit the four relation-

ships for each species:

ŷ i ¼ b0 þ b1x1i þ b2x2i þ � � � þ bkxki þ εi ð6Þ

ŷ i ¼ b0x
b1
1i x

b2
2i � � � x

bk
ki εi ð7Þ

where βj (j = 1,. . .,k) are the parameters to be estimated; xji is the observation of the jth predic-

tor on the ith sample plot; and εi is the error.

Model fitting was carried out in two steps. In the first step, the set of predictors (ALS met-

rics or stand variables) for each dependent variable in models (6) and (7) was selected by using

the stepwise variable selection method, in combination with an understanding of the process

modelled (biological sense of the variables and the signs of the parameter estimates). In order

to avoid multicollinearity and over-fitted models, predictors with a condition number above

30 were disregarded [42]. In addition, the absence of heteroscedasticity was tested using the

White-test [43] (weighted regression would be applied if heteroscedasticity were detected).

The power model (Eq 7) was initially linearized to use the stepwise variable selection method

and, once the set of predictors was selected, the original model was fitted using nonlinear

regression with the parameter estimates of the linear model as initial values of the iterative

procedure.

Fitted models (6) and (7) were subsequently compared for each dependent variable on the

basis of graphical analysis of observed against predicted values of the dependent variable and

the studentized residuals against the predicted values of the dependent variable. The goodness-

of-fit statistics RMSE and the model efficiency (ME) were also calculated:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðyi � ŷ iÞ

2

n � p

v
u
u
u
u
t

ð8Þ

ME ¼ 1�
ðn � 1Þ

Xn

i¼1

ðyi � ŷ iÞ
2

ðn � pÞ
Xn

i¼1

ðyi � �yÞ2
ð9Þ

where yi, ŷ i and �y are the observed, predicted and mean values of the dependent variable,

respectively, n is the total number of observations, and p is the number of model parameters.

In a second step, the four selected models for each species were fitted simultaneously by use

of the full information maximum likelihood (FIML) method implemented in the SAS/ETS1

Model Procedure [44]. Simultaneous fitting must be carried out because the values of the four

dependent variables were estimated for each sample plot from the same profile of vertical avail-

able CFL, and the residuals are therefore expected to be correlated. The FIML method takes

into account the cross-model correlations, thus improving the efficiency of the estimation. In

the first step, the cross-model error covariance matrix required for initiating the iterative pro-

cedure was estimated using the ordinary least squares (OLS) method.

In order to assess the error involved when the proposed approach for estimating the vertical

available CFL profiles is used for prediction, the RMSE and the ME (Eqs 8 and 9) were calcu-

lated by comparing the vertical profiles estimated from field data and the vertical profiles esti-

mated from ALS metrics for each sample plot. Standard goodness-of-fit tests often used to

evaluate the performance of distribution functions (e.g. Kolmogorov-Smirnov, Cramér-von

Vertical distribution of CFL predicted from ALS data
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Mises and Andersen-Darling tests) were not used because (i) Weibull parameters were esti-

mated from the data using a relatively complicated approach, and the critical values of the tests

are therefore not valid [45,46], and (ii) some tests may not provide much useful information

about the performance of the model as they are not designed to answer questions about the

error associated with estimates and predictions obtained from the model. Rejecting the null

hypothesis of these tests signifies that a model is not a perfect representation of the observed

distribution; however, although not perfect this may be the most accurate available model [46].

Results

Vertical distribution of CFL

The vertical profiles of CFLrel in each sample plot are shown in Fig 3. Eqs (4) and (5) were

used to estimate the scale and shape parameters of the Weibull function (a1 and a2, respec-

tively) for each sample plot.

The values of â1 ranged from 1.44 to 20.56 with a mean value of 7.22 (Std. Dev = 3.63) for

maritime pine, and from 1.79 to 14.52, with a mean value of 6.81 (Std. Dev = 2.32), for radiata

pine. The values of â2 ranged from 1.28 to 5.88, with a mean value of 2.81 (Std. Dev = 0.77) for

maritime pine, and from 1.64 to 3.67, with a mean value of 2.37 (Std. dev = 0.39) for radiata

pine. We used Tukey’s adjusted pairwise comparisons to study the influence of pine species

on both parameters and found that the mean values of â1 and â2 were greater for maritime

pine (Fig 4), although only the differences in parameter â2 were significant (F-value 36.33;

p<0.0001).

The estimated Weibull parameters and the estimated CFL and mCBH from field data were

used to obtain estimated vertical distributions of CFL. These distributions explained more

than 99% of the variation in the CFL vertical distributions estimated from field data for both

Fig 3. Vertical profiles of relative canopy fuel load (CFLrel) in each sample plot of P. pinaster (left) and P. radiata (right)

estimated from field data.

https://doi.org/10.1371/journal.pone.0176114.g003
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Fig 4. Box plot of the estimated values of the scale and shape parameters of the Weibull function (â1 and â2,

respectively) for P. pinaster (Pp) and P. radiata (Pr) sample plots. Different letters indicate significant differences

between mean values (α = 0.05).

https://doi.org/10.1371/journal.pone.0176114.g004
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species with a RMSE value of 0.0159 (RMSE% relative to the mean CFL value = 2.78%) for

maritime pine and 0.0150 (RMSE% relative to the mean CFL value = 2.20%) for radiata pine.

System of models based on stand variables

The first system of fitted models for estimating the vertical distribution of canopy fuel loads

uses stand variables as predictors. Number of trees per hectare, stand basal area, quadratic

mean diameter and dominant height were used as predictors. The system of models for each

species, obtained by simultaneous fitting, is shown in Table 3.

According to the values of the goodness-of-fit statistics, linear models were more accurate

than powered models for CFL in both species, whereas powered models were more accurate

for the other three dependent variables. The values of the condition numbers and the results of

the White-test indicated the absence of any problems related to multicollinearity or

heteroscedasticity.

The observed variation explained by the models of CFL and mCBH ranged from 64% to

98%, with slightly greater values for radiata pine stands. The models used to estimate the first

moment explained more than 96% of the observed variation, whereas the models of the second

moment explained 64% and 74% of the observed variation for maritime pine and radiata pine,

respectively.

Dominant height was the main predictor in all models in which the dependent variable was

directly or indirectly related to canopy height (mCBH and the moments of the Weibull distri-

bution); moreover, when other predictor variables were also included in those models, only

quadratic mean diameter for maritime pine and stand basal area for radiata pine significantly

improved the results obtained with dominant height. The only predictor in the CFL models

was basal area for both species.

The system of four models was used to estimate the vertical distributions of CFL of each

sample plot. The profiles obtained explained 84% and 86% of the variation for maritime pine

and radiata pine respectively, with a RMSE value of 0.1441 for maritime pine (RMSE% relative

Table 3. Parameter estimates and goodness-of-fit statistics for the systems of models obtained for each species by using stand variables as pre-

dictors. ME is the model efficiency (Eq 9) and RMSE is the root mean square error (Eq 8). All parameter estimates were significant at p < 0.05.

Species Dependent variable Model b̂0 b̂1 b̂2
ME RMSE

P. pinaster Canopy Fuel Load

(CFL, kg m-2)
CF̂L ¼ b̂1G - - - 0.0265 - - - 0.9668 0.0747

Minimum Canopy Base Height

(mCBH, m)
mCB̂H ¼ b̂0H

b̂1dgb̂2 0.0107 0.7615 1.2144 0.6444 1.4748

First Moment

(m1)
m̂1 ¼ b̂0H

b̂1dgb̂2 0.3752 1.0792 0.1153 0.9608 0.8775

Second Moment

(m2)
m̂2 ¼ b̂0H

b̂1dgb̂2 0.3946 1.9370 -0.8420 0.6448 3.3604

P. radiata Canopy Fuel Load

(CFL, kg m-2)
CF̂L ¼ b̂1G - - - 0.0299 - - - 0.9847 0.0488

Minimum Canopy Base Height

(mCBH, m)
mCB̂H ¼ b̂0H

b̂1Gb̂2 0.0306 1.3747 0.2493 0.7045 1.3003

First Moment

(m1)
m̂1 ¼ b̂0H

b̂1Gb̂2 0.3092 1.1326 0.0649 0.9637 0.7477

Second Moment

(m2)
m̂2 ¼ b̂0H

b̂1Gb̂2 0.1055 1.7609 -0.2286 0.7418 2.4237

Note: H = dominant height (m), G = stand basal area (m2ha-1), dg = quadratic mean diameter (cm)

https://doi.org/10.1371/journal.pone.0176114.t003
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to the mean CFL value = 25.29%) and of 0.1518 for radiata pine (RMSE% relative to the mean

CFL value = 22.32%).

Graphs of CFL distributions estimated from field data against predicted CFL distributions

using the system based on stand variables and box plots of residuals against percentage of can-

opy length obtained with the system based on stand variables are shown in Fig 5. The scatter

diagrams indicated that both distributions were strongly correlated and did not tend to be

either over- or underestimated. Moreover, examination of the box plots showed than the resid-

uals were homogeneously distributed along the canopy length and the greatest residuals were

located in the upper 10% of the canopy.

System of models based on ALS variables

Finally, a system of four models was fitted for each species to predict the vertical distribution

of CFL using ALS metrics as predictors. The combination of models (linear or power) and pre-

dictors obtained in the simultaneous fitting are shown in Table 4.

According to the goodness-of-fit statistics, linear models were more accurate than power

models for CFL and mCBH in radiata pine, whereas the power models were more accurate for

the other models. The values of the condition numbers and the results of the White-test did

not indicate any problems related to multicollinearity or heteroscedasticity.

The variation explained by the models of CFL and mCBH ranged from 41% to 52%, and the

values were again slightly greater for radiata pine stands. The models for the first moment

explained more than 72% and 76% of the observed variation, and the models for the second

moment explained more than 47% and 53% of the observed variation, for respectively mari-

time and radiata pine. The height of the 99th percentile of the ALS data was the only predictor

in all the models, except the CFL model, in which the percentage of first returns above mean

was also included for both species.

This system of four models was also used to estimate the vertical distributions of CFL for

each sample plot. The profiles obtained explained 52% and 49% of the variation for maritime

pine and radiata pine respectively, with a RMSE value of 0.2587 for maritime pine (RMSE%

relative to the mean CFL value = 45.39%) and 0.3028 for radiata pine (RMSE% relative to the

mean CFL value = 44.53%).

Graphs of CFL distributions estimated from field data against predicted CFL distributions

using the system based on ALS metrics and box plots of residuals against percentage of canopy

length obtained with the system based on ALS variables are shown in Fig 6 for each species.

The scatter diagrams indicated a slight tendency for the CFL distributions to be overestimated

for both species. In the same way as for the system of models based on stand variables, inspec-

tion of the box plot indicated that the residuals were homogeneously distributed along the can-

opy length, and the largest residuals were located in the upper 10% of the canopy.

Discussion

The two systems developed here provide researchers and forest fuel load managers with useful

tools for describing the structural characteristics of the canopy fuel complex in P. pinaster and

P. radiata stands. Moreover, these canopy fuel characteristics can be estimated from two differ-

ent sources of data: from ALS metrics or from forest stand variables measured in the field.

The system based on the use of stand variables as predictors fitted the data more accurately

than the system based on ALS metrics. There are two possible reasons for these results: the

coarse resolution of the ALS data used (0.5 first returns m-2) and the inaccuracy in locating the

ground plots. Concerning the first possibility, according to White et al. [36], a minimum of 1

pulse m-2 (> 4 pulses m-2 for dense forests on complex terrain) is recommended to produce

Vertical distribution of CFL predicted from ALS data
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Fig 5. Scatter diagrams of vertical CFL distributions estimated from field data against predicted vertical CFL distributions obtained

using stand variables as predictors. The solid line represents the linear model fitted, and the broken line is the 1:1 line (left, first column).

Box plot of CFL residuals (using stand variables as predictors) against canopy length classes (right, second column). Graphs for P. pinaster

are in the first row and for P. radiata in the second row.

https://doi.org/10.1371/journal.pone.0176114.g005
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an operational ALS-based enhanced forest inventory. This hypothesis is consistent with the

results (CFL: ME = 0.97, RMSE = 0.0363 kg m-2; mCBH: ME = 0.94, RMSE = 0.329 m) obtained

by Hevia et al. [47] in maritime pine stands in Asturias (a region bordering Galicia) with an

ALS sampling density ranging from 8 to 16 first returns m-2.

Concerning the second possibility, White el al. [36] pointed out the need for accurate geore-

ferencing of ground plots to maximize the predictive power of the models developed. In the

present study, the 99th height percentile (h99) of the points cloud was the only ALS predictor in

all models except CFL, in which the percentage of first returns above mean (PFRAhmean) was

also included as a predictor. According to the results obtained by Gobakken and Næesset [37],

both h99 and PFRAhmean are two of the ALS metrics least affected by plot georeferencing errors.

These authors estimated a mean error smaller than 0.5 m and less than 2% for h99 and PFRAh-

mean, respectively working with plots of 300–400 m2 and a georeferencing error of the center of

the plot of 10 m. As an example, the system of four models based on ALS metrics developed in

the present study was used to estimate the vertical distributions of CFL of each sample plot

considering the above mentioned errors for each predictor, yielding reductions of 1.2% and

0.9% in the RMSE for maritime pine and radiata pine, respectively. Moreover, taking into

account the larger surface area of the sample plots used in the present study (1964 m2) and

assuming that the plot georeferencing errors are smaller than 10 m, the effect of this source of

error on the accuracy of the estimates can be considered negligible.

One remarkable characteristic of the systems of models developed is that they are compati-

ble with the two main approaches used to define and estimate canopy fuel variables related to

crown fire initiation and spread (the simplest one, which assumes that available canopy fuel is

homogeneously distributed throughout the aerial layer, and the more complex and realistic

ones, which assume that the crown shape defines the available fuel distribution along the

crown). Moreover, modelling the available canopy fuel load vertical profile (necessary for the

latter approach) enables CBH to be estimated for any of the canopy bulk density thresholds

defined to date or for new values that may be defined by crown fire behavior research in the

future.

Table 4. Parameter estimates and goodness-of-fit statistics for the systems of models obtained for each species using ALS metrics as predictors.

ME is the model efficiency (Eq 9) and RMSE is the root mean square error (Eq 8). All parameter estimates were significant at p < 0.05.

Species Dependent variable Model b̂0 b̂1 b̂2
ME RMSE

P. pinaster Canopy Fuel Load

(CFL, kg m-2)
CF̂L ¼ b̂0h

b̂1
99PFR

b̂2

Ahmean
0.0443 0.9057 0.0631 0.4132 0.3145

Minimum Canopy Base Height

(mCBH, m)
mCB̂H ¼ b̂0h

b̂1
99

0.4144 0.7998 - - - 0.4863 2.1030

First Moment

(m1)
m̂1 ¼ b̂0h

b̂1
99

0.9401 0.8798 - - - 0.7616 2.1616

Second Moment

(m2)
m̂2 ¼ b̂0h

b̂1
99

0.1548 1.3852 - - - 0.4747 4.0823

P. radiata Canopy Fuel Load

(CFL, kg m-2)
CF̂L ¼ b̂1h99 þ b̂2PFRAhmean - - - 0.0367 0.0058 0.4583 0.2910

Minimum Canopy Base Height

(mCBH, m)
mCB̂H ¼ b̂1h99

- - - 0.2222 - - - 0.5225 1.6388

First Moment

(m1)
m̂1 ¼ b̂0h

b̂1
99

1.0223 0.8108 - - - 0.7288 2.0340

Second Moment

(m2)
m̂2 ¼ b̂0h

b̂1
99

0.2321 1.2650 - - - 0.5317 3.2499

Note: h99 = height of the 99th percentile of ALS returns (m), PFRAhmean = percentage of first returns above mean.

https://doi.org/10.1371/journal.pone.0176114.t004
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Fig 6. Scatter diagram of vertical CFL distributions estimated from field data against vertical CFL distributions predicted using ALS

metrics. The solid line represents the linear model fitted, and the dashed line is the 1:1 line (left, first column). Box plot of CFL residuals (using

ALS metrics as predictors) against canopy length classes (right, second column). Graphs for P. pinaster are in the first row and those for P.

radiata are in the second row.

https://doi.org/10.1371/journal.pone.0176114.g006
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Maps of the spatial distribution of the canopy variables related to crown fire risk (CFL, CBD
and CBH) can be generated by applying the system based on ALS variables using the wall-to-

wall ALS metrics. Maritime and radiata pine forest should first be identified by using the strata

of the Spanish forest map (data available at http://www.mapama.gob.es/es/biodiversidad/

servicios/banco-datos-naturaleza/informacion-disponible/mfe50.aspx). Estimates according

to the more realistic fuel vertical distribution approach require the use of the whole system of

four models. When the fire simulator used requires estimates based on the simple approach,

mean stand height (�h) should also be predicted. In this case, the models previously developed

for the species in the study area to estimate �h from ALS metrics should be used [23,47,48].

The proposed models could be used to evaluate the effects of different forest management

alternatives for reducing crown fire hazard. Thinning and pruning treatments should be

applied in order to increase CBH and reduce CBD below 0.1 kg m-3, the accepted threshold for

crown fire propagation [1], thus yielding stand structures that are more resistant to the initia-

tion and spread of crown fire [7]. In addition to information about vertical canopy fuel distri-

bution, fuel management decisions must also be based on values of other essential variables

such as surface fuel load and moisture content, foliar moisture content and wind reduction by

the canopy and topography [2].

Conclusions

Data from the Spanish National Forest Inventory and low density ALS data were used to pre-

dict the vertical distribution of canopy fuel load in P. radiata and P. pinaster stands in Galicia

(north-west Spain). Two different systems of models, one using stand variables and the other

using ALS metrics as predictors, have been proposed. Models with stand variables as predic-

tors performed better than those with ALS metrics, probably due to the coarse resolution of

ALS data used. The main advantage of the system of models based on ALS metrics is that these

inputs are available for all population elements, and could be used to predict the vertical distri-

bution of CFL over the entire area of the ALS data coverage. Consequently, maps representing

spatially explicit data layers of canopy fuel variables (CFL, CBH, CBD) can be obtained and

subsequently used as inputs for fire behaviour simulators.

Recent advances in modelling crown fire behavior require accurate estimates of the vertical

distribution of canopy fuels, and the models developed can therefore be used to good advan-

tage. Nevertheless, other important areas of forest research such as carbon accounting, selec-

tive biomass estimation from pruning and thinning treatments, ecological modelling of the

light regime within the crown and physiological modelling of canopy photosynthesis would

also benefit greatly from better knowledge of vertical distribution of tree crown biomass [49].
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toral research stays of Dr Eduardo González-Ferreiro at different institutions. Copyright of
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Allometric equations for estimating canopy fuel load and distribution of pole-size maritime pine trees in

five Iberian provenances. Canadian Journal of Forest Research 2013; 43: 149–158.

Vertical distribution of CFL predicted from ALS data

PLOS ONE | https://doi.org/10.1371/journal.pone.0176114 April 27, 2017 21 / 21

https://doi.org/10.1371/journal.pone.0176114

