39,192 research outputs found

    Study of a microcanonical algorithm on the ±J\pm J spin glass model in d=3

    Full text link
    We consider a microcanonical local algorithm to be applied on the ±J\pm J spin glass model. We have compared the results coming from a microcanonical Monte Carlo simulation with those from a canonical one: Thermalization times, spin glass susceptibilities and Binder parameters. For a fixed lattice size we found different results between the two thermodynamic ensembles, which tend to vanish at bigger volumes. Moreover, microcanonical thermalization times are longer than the canonical ones. Finally we have checked that one of the Guerra relations is satisfied with good precision for the two largest lattices.Comment: Revised version. Latex 14 pages, 6 figures. To be published in Comput. Phys. Commu

    DSP-based ionospheric radiolink using DS-CDMA and on-line channel estimation

    Get PDF
    In this paper, a new blind multiuser detection algorithm is presented. It can both cancel multiuser interference and estimate the multipath channel response in a blind way. The method has been specially conceived for low coherence bandwidth channels such as the ionospheric channel and exhibits very low computational requirements. Real-time measurements from a fully digital HF radio-link are presented that confirm the reliability of the method for the ionospheric channel.Peer ReviewedPostprint (published version

    Chiral Lagrangian at finite temperature from the Polyakov-Chiral Quark Model

    Get PDF
    We analyze the consequences of the inclusion of the gluonic Polyakov loop in chiral quark models at finite temperature. Specifically, the low-energy effective chiral Lagrangian from two such quark models is computed. The tree level vacuum energy density, quark condensate, pion decay constant and Gasser-Leutwyler coefficients are found to acquire a temperature dependence. This dependence is, however, exponentially small for temperatures below the mass gap in the full unquenched calculation. The introduction of the Polyakov loop and its quantum fluctuations is essential to achieve this result and also the correct large NcN_c counting for the thermal corrections. We find that new coefficients are introduced at O(p4){\cal O}(p^4) to account for the Lorentz breaking at finite temperature. As a byproduct, we obtain the effective Lagrangian which describes the coupling of the Polyakov loop to the Goldstone bosons.Comment: 16 pages, no figure

    Polyakov loop in chiral quark models at finite temperature

    Get PDF
    We describe how the inclusion of the gluonic Polyakov loop incorporates large gauge invariance and drastically modifies finite temperature calculations in chiral quark models after color neutral states are singled out. This generates an effective theory of quarks and Polyakov loops as basic degrees of freedom. We find a strong suppression of finite temperature effects in hadronic observables triggered by approximate triality conservation (Polyakov cooling), so that while the center symmetry breaking is exponentially small with the constituent quark mass, chiral symmetry restoration is exponentially small with the pion mass. To illustrate the point we compute some low energy observables at finite temperature and show that the finite temperature corrections to the low energy coefficients are NcN_c suppressed due to color average of the Polyakov loop. Our analysis also shows how the phenomenology of chiral quark models at finite temperature can be made compatible with the expectations of chiral perturbation theory. The implications for the simultaneous center symmetry breaking-chiral symmetry restoration phase transition are also discussed.Comment: 24 pages, 8 ps figures. Figure and appendix added. To appear in Physical Review

    Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities

    Full text link
    In the present paper we introduce a way of identifying quantum phase transitions of many-body systems by means of local time correlations and Leggett-Garg inequalities. This procedure allows to experimentally determine the quantum critical points not only of finite-order transitions but also those of infinite order, as the Kosterlitz-Thouless transition that is not always easy to detect with current methods. By means of simple analytical arguments for a general spin-1/21 / 2 Hamiltonian, and matrix product simulations of one-dimensional XXZX X Z and anisotropic XYX Y models, we argue that finite-order quantum phase transitions can be determined by singularities of the time correlations or their derivatives at criticality. The same features are exhibited by corresponding Leggett-Garg functions, which noticeably indicate violation of the Leggett-Garg inequalities for early times and all the Hamiltonian parameters considered. In addition, we find that the infinite-order transition of the XXZX X Z model at the isotropic point can be revealed by the maximal violation of the Leggett-Garg inequalities. We thus show that quantum phase transitions can be identified by purely local measurements, and that many-body systems constitute important candidates to observe experimentally the violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys. Rev.

    Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers

    Get PDF
    Quantum nanomagnets can show a field dependence of the relaxation time very different from their classical counterparts, due to resonant tunneling via excited states (near the anisotropy barrier top). The relaxation time then shows minima at the resonant fields H_{n}=n D at which the levels at both sides of the barrier become degenerate (D is the anisotropy constant). We showed that in Mn12, near zero field, this yields a contribution to the nonlinear susceptibility that makes it qualitatively different from the classical curves [Phys. Rev. B 72, 224433 (2005)]. Here we extend the experimental study to finite dc fields showing how the bias can trigger the system to display those quantum nonlinear responses, near the resonant fields, while recovering an classical-like behaviour for fields between them. The analysis of the experiments is done with heuristic expressions derived from simple balance equations and calculations with a Pauli-type quantum master equation.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. B, brief report
    • …
    corecore