191 research outputs found

    Over visies en nieuwe wegen: Casestudies van organisatievormen in de biologische veredeling en zaadproductie

    Get PDF
    Onderscheid tussen het biologisch dynamisch circuit en het biologisch klassieke circuit. Het begrip circuit is gebruikt om de samenhang van de initiatieven te verduidelijken. We komen tot de conclusie dat de sociale organisatie van veredelingsactiviteiten, de toegepaste en afgewezen technologieën, en de financiële en juridische constructies samenhang vertonen. De samenhang is voor de twee circuits verschillend. Dit verschil hangt samen met verschil in visies van veredelaars, zaaizaadproducenten en financiers binnen de initiatieven en de daaruitvolgende keuzes ten aanzien van de financiering en toe te passen technologieën

    Entanglement of Imaging and Imagining of Nanotechnology

    Get PDF
    Images, ranging from visualizations of the nanoscale to future visions, abound within and beyond the world of nanotechnology. Rather than the contrast between imaging, i.e. creating images that are understood as offering a view on what is out there, and imagining, i.e. creating images offering impressions of how the nanoscale could look like and images presenting visions of worlds that might be realized, it is the entanglement between imaging and imagining which is the key to understanding what images do. Three main arenas of entanglement of imag(in)ing and the tensions involved are discussed: production practices and use of visualizations of the nanoscale; imag(in)ing the future and the present; and entanglements of nanoscience and art. In these three arenas one sees struggles about which images might stand for nanotechnology, but also some stabilization of the entanglement of imag(in)ing, for example in established rules in the practices of visualizing the nanoscale. Three images have become iconic, through the combination of their wide reception and further circulation. All three, the IBM logo, the Foresight Institute’s Nanogear image, and the so-called Nanolouse, depict actual or imagined technoscientific objects and are thus seen as representing technoscientific achievements – while marking out territory

    Promise and ontological ambiguity in the In Vitro Meat imagescape: From laboratory myotubes to the cultured burger

    Get PDF
    In vitro meat, also known as cultured meat, involves growing cells into muscle tissue to be eaten as food. The technology had its most high profile moment in 2013 when a cultured burger was cooked and tasted in a press conference. Images of the burger featured in the international media and were circulated across the internet. These images – literally marks on a two-dimension surface - do important work in establishing what in vitro meat is and what it can do. A combination of visual semiotics and narrative analysis shows that images of in vitro meat afford readings of their story that are co-created by the viewer. Before the cultured burger, during 2011, images of in vitro meat fell into four distinct categories: cell images, tissue images, flowcharts, and meat in a dish images. The narrative infrastructure of each image type affords different interpretations of what in vitro meat can accomplish and what it is. The 2013 cultured burger images both draw upon and depart from these images types in an attempt to present in vitro meat as a normal food stuff, and as ‘matter in place’ when placed on the plate. The analysis of individual images and the collection of images about a certain object or subject – known as the imagescape – is a productive approach to understanding the ontology and promise of in vitro meat and is applicable to other areas of social life

    Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant

    Get PDF
    Background: Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16. Methods and Results: A bacterial artificial chromosome (BAC) array comparative genome hybridisation (CGH) screen of 1027 patients with mental retardation and/or multiple congenital anomalies (MR/MCA) was performed. The BAC array CGH screen identified five patients with deletions and five with apparently reciprocal duplications of 16p13 covering 1.65 Mb, including 15 RefSeq genes. In addition, three atypical rearrangements overlapping or flanking this region were found. Fine mapping by high-resolution oligonucleotide arrays suggests that these deletions and duplications result from non-allelic homologous recombination (NAHR) between distinct LCR16 subunits with >99% sequence identity. Deletions and duplications were either de novo or inherited from unaffected parents. To determine whether these imbalances are associated with the MR/MCA phenotype or whether they might be benign variants, a population of 2014 normal controls was screened. The absence of deletions in the control population showed that 16p13.11 deletions are significantly associated with MR/MCA (p = 0.0048). Despite phenotypic variability, common features were identified: three patients with deletions presented with MR, microcephaly and epilepsy (two of these had also short stature), and two other deletion carriers ascertained prenatally presented with cleft lip and midline defects. In contrast to its previous association with autism, the duplication seems to be a common variant in the population (5/1682, 0.29%). Conclusion: These findings indicate that deletions inherited from clinically normal parents are likely to be causal for the patients' phenotype whereas the role of duplications (de novo or inherited) in the phenotype remains uncertain. This difference in knowledge regarding the clinical relevance of the deletion and the duplication causes a paradigm shift in (cyto) genetic counselling

    Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia

    Get PDF
    Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) — the most common chromosomal translocation observed in childhood ALL — which leads to an ETV6–RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, PCMH=8.94 × 10−9, OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10−11, OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10−9, OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10−7, OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6–RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis

    Biallelic loss of LDB3 leads to a lethal pediatric dilated cardiomyopathy

    Get PDF
    Autosomal dominant variants in LDB3 (also known as ZASP), encoding the PDZ-LIM domain-binding factor, have been linked to a late onset phenotype of cardiomyopathy and myofibrillar myopathy in humans. However, despite knockout mice displaying a much more severe phenotype with premature death, bi-allelic variants in LDB3 have not yet been reported. Here we identify biallelic loss-of-function variants in five unrelated cardiomyopathy families by next-generation sequencing. In the first family, we identified compound heterozygous LOF variants in LDB3 in a fetus with bilateral talipes and mild left cardiac ventricular enlargement. Ultra-structural examination revealed highly irregular Z-disc formation, and RNA analysis demonstrated little/no expression of LDB3 protein with a functional C-terminal LIM domain in muscle tissue from the affected fetus. In a second family, a homozygous LDB3 nonsense variant was identified in a young girl with severe early-onset dilated cardiomyopathy with left ventricular non-compaction; the same homozygous nonsense variant was identified in a third unrelated female infant with dilated cardiomyopathy. We further identified homozygous LDB3 frameshift variants in two unrelated probands diagnosed with cardiomegaly and severely reduced left ventricular ejection fraction. Our findings demonstrate that recessive LDB3 variants can lead to an early-onset severe human phenotype of cardiomyopathy and myopathy, reminiscent of the knockout mouse phenotype, and supporting a loss of function mechanism

    Germline Variation Controls the Architecture of Somatic Alterations in Tumors

    Get PDF
    Studies have suggested that somatic events in tumors can depend on an individual's constitutional genotype. We used squamous cell carcinomas (SCC) of the skin, which arise in high multiplicity in organ transplant recipients, as a model to compare the pattern of somatic alterations within and across individuals. Specifically, we performed array comparative genomic hybridization on 104 tumors from 25 unrelated individuals who each had three or more independently arisen SCCs and compared the profiles occurring within patients to profiles of tumors across a larger set of 135 patients. In general, chromosomal aberrations in SCCs were more similar within than across individuals (two-sided exact-test p-value ), consistent with the notion that the genetic background was affecting the pattern of somatic changes. To further test this possibility, we performed allele-specific imbalance studies using microsatellite markers mapping to 14 frequently aberrant regions of multiple independent tumors from 65 patients. We identified nine loci which show evidence of preferential allelic imbalance. One of these loci, 8q24, corresponded to a region in which multiple single nucleotide polymorphisms have been associated with increased cancer risk in genome-wide association studies (GWAS). We tested three implicated variants and identified one, rs13281615, with evidence of allele-specific imbalance (p-value = 0.012). The finding of an independently identified cancer susceptibility allele with allele-specific imbalance in a genomic region affected by recurrent DNA copy number changes suggest that it may also harbor risk alleles for SCC. Together these data provide strong evidence that the genetic background is a key driver of somatic events in cancer, opening an opportunity to expand this approach to identify cancer risk alleles

    Aberrant function of the C-terminal tail of HIST1H1E Aacelerates cellular senescence and causes premature aging

    Get PDF
    Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging

    Biotechnologizing Jatropha for local sustainable developments

    Get PDF
    This article explores whether and how the biotechnologization process that the fuel-plant Jatropha curcas is undergoing might strengthen local sustainable development. It focuses on the ongoing efforts of the multi-stakeholder network Gota Verde to harness Jatropha within local small-scale production systems in Yoro, Honduras. It also looks at the genomics research on Jatropha conducted by the Dutch research institute Plant Research International, specifically addressing the ways in which that research can assists local development in Honduras. A territorial approach is applied for analysis employing a three domain concept (local sustainable biotechnological development) of territory, technology and re-territorialization. The article suggests that, although the biotechnologization process (through genomics) of Jatropha within the socio-technical framework of the institute and multi-stakeholder networks is an ongoing process¿¿and different trajectories are, therefore, still open - the process can, nevertheless, strengthen local sustainable developmen
    corecore