611 research outputs found

    Heat buffers improve capacity and exploitation degree of geothermal energy sources

    Get PDF
    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy greenhouse heat, carbon dioxide and electricity demand at minimum cost. Tank buffers, basement buffers and aquifers were considered as short and long term buffers. Simulations were carried out for a 10ha sweet pepper and a 30ha tomato greenhouse (15ha intensively lighted). Standard heating systems based on central boiler and co-generation were used as a reference and compared with combinations of boilers, co-generators, geothermal heat and heat buffer strategies. Crop production and greenhouse climate were simulated and resource demand determined for normal greenhouse operation. A linear programming algorithm was used to apply resources and equipment available to the model at minimum cost. Results show that heat buffers help to reduce the required capacity of a geothermal heat source, and increase both the utilisation degree of the source and the cover percentage of greenhouse heat demand. The technically most feasible solution for long term buffering was the basement buffer which allows high buffer volumes without loss of useful space and heat loss contributes to greenhouse heating, however this solution was economically not feasible. Also the deep aquifer was a good option, however exploitation risks and manageability are potential problems. Integration of geothermal heat with other sources resulted in the best solutions that were both technically and economically feasible. Simulation showed at gas price level 30¿ct.m-3, that geothermal heat was cheaper than central boiler and even co-generation heat when hours of operation exceed 1000h.y-1. Instead of using large buffers, peak loads can also be covered by central boilers. Simulated solutions reduced gas consumption with 60 to 95%

    Scanning for Velocity Anomalies in the Crust and Mantle with Diffractions from the Core-Mantle Boundary

    Get PDF
    A novel method, based on differential arrival times of diffractions from the core-mantle boundary, swiftly scans for seismic velocity anomalies in the crust and mantle below an array of seismometers. The method is applied to data from the USArray and the large-scale structural features in the western United States are resolved. High lateral resolution is achieved, but structure is averaged over depth. As such, this method is complementary to surface-wave and tomographic body-wave methods, where averaging takes place in the lateral sense. Processing and data-volume requirements involved are minimal. Therefore, this method can be applied during the early stages of array deployment, before the necessary data is acquired to obtain accurate inversion images. The quick scanner can be used to identify features of interest, upon which the array could be refined

    Effects of early-life stress on peripheral and central mitochondria in male mice across ages

    Get PDF
    Exposure to early-life stress (ES) increases the vulnerability to develop metabolic diseases as well as cognitive dysfunction, but the specific biological underpinning of the ES-induced programming is unknown. Metabolic and cognitive disorders are often comorbid, suggesting possible converging underlying pathways. Mitochondrial dysfunction is implicated in both metabolic diseases and cognitive dysfunction and chronic stress impairs mitochondrial functioning. However, if and how mitochondria are impacted by ES and whether they are implicated in the ES-induced programming remains to be determined. ES was applied by providing mice with limited nesting and bedding material from postnatal day (P)2-P9, and metabolic parameters, cognitive functions and multiple aspects of mitochondria biology (i.e. mitochondrial electron transport chain (ETC) complex activity, mitochondrial DNA copy number, expression of genes relevant for mitochondrial function, and the antioxidant capacity) were studied in muscle, hypothalamus and hippocampus at P9 and late adulthood (10–12 months of age). We show that ES altered bodyweight (gain), adiposity and glucose levels at P9, but not in late adulthood. At this age, however, ES exposure led to cognitive impairments. ES affected peripheral and central mitochondria in an age-dependent manner. At P9, both muscle and hypothalamic ETC activity were affected by ES, while in hippocampus, ES altered the expression of genes involved in fission and antioxidant defence. In adulthood, alterations in ETC complex activity were observed in the hypothalamus specifically, whereas in muscle and hippocampus ES affected the expression of genes involved in mitophagy and fission, respectively. Our study demonstrates that ES affects peripheral and central mitochondria biology throughout life, thereby uncovering a converging mechanism that might contribute to the ES-induced vulnerability for both metabolic diseases and cognitive dysfunction, which could serve as a novel target for intervention.</p

    The Japanese model in retrospective : industrial strategies, corporate Japan and the 'hollowing out' of Japanese industry

    Get PDF
    This article provides a retrospective look at the Japanese model of industrial development. This model combined an institutional approach to production based around the Japanese Firm (Aoki's, J-mode) and strategic state intervention in industry by the Japanese Ministry of International Trade and Industry (MITI). For a long period, the alignment of state and corporate interests appeared to match the wider public interest as the Japanese economy prospered. However, since the early 1990s, the global ambitions of the corporate sector have contributed to a significant 'hollowing out' of Japan's industrial base. As the world today looks for a new direction in economic management, we suggest the Japanese model provides policy-makers with a salutary lesson in tying the wider public interest with those of the corporate sector

    Cryotomography of budding influenza a virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end

    Get PDF
    Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process

    Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars

    Full text link
    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the Fast Multipole Method) are presented for systems composed of nanoscale iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979 ±\pm 14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only ∼\sim 1 Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of numerical technique

    Low pH gel intranasal sprays inactivate influenza viruses in vitro and protect ferrets against influenza infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing strategies for controlling the severity of pandemic influenza is a global public health priority. In the event of a pandemic there may be a place for inexpensive, readily available, effective adjunctive therapies to support containment strategies such as prescription antivirals, vaccines, quarantine and restrictions on travel. Inactivation of virus in the intranasal environment is one possible approach. The work described here investigated the sensitivity of influenza viruses to low pH, and the activity of low pH nasal sprays on the course of an influenza infection in the ferret model.</p> <p>Methods</p> <p>Inactivation of influenza A and avian reassortment influenza was determined using <it>in vitro </it>solutions tests. Low pH nasal sprays were tested using the ferret model with an influenza A Sydney/5/97 challenge. Clinical measures were shed virus, weight loss and body temperature.</p> <p>Results</p> <p>The virus inactivation studies showed that influenza viruses are rapidly inactivated by contact with acid buffered solutions at pH 3.5. The titre of influenza A Sydney/5/97 [H3N2] was reduced by at least 3 log cycles with one minute contact with buffers based on simple acid mixtures such as L-pyroglutamic acid, succinic acid, citric acid and ascorbic acid. A pH 3.5 nasal gel composition containing pyroglutamic acid, succinic acid and zinc acetate reduced titres of influenza A Hong Kong/8/68 [H3N2] by 6 log cycles, and avian reassortment influenza A/Washington/897/80 X A Mallard/New York/6750/78 [H3N2] by 5 log cycles, with 1 min contact.</p> <p>Two ferret challenge studies, with influenza A Sydney/5/97, demonstrated a reduction in the severity of the disease with early application of low pH nasal sprays versus a saline control. In the first study there was decreased weight loss in the treatment groups. In the second study there were reductions in virus shedding and weight loss, most notably when a gelling agent was added to the low pH formulation.</p> <p>Conclusion</p> <p>These findings indicate the potential of a low pH nasal spray as an adjunct to current influenza therapies, and warrant further investigation in humans.</p
    • …
    corecore