47 research outputs found
Increased efficacy for in-house validation of real-time PCR GMO detection methods
To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSDr and RSDR) were calculated. The results showed that not only the PCR reaction but also the factors ‘DNA isolation’ and ‘PCR day’ are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods
Experimental system to displace radioisotopes from upper to deeper soil layers: chemical research
BACKGROUND: Radioisotopes are introduced into the environment following nuclear power plant accidents or nuclear weapons tests. The immobility of these radioactive elements in uppermost soil layers represents a problem for human health, since they can easily be incorporated in the food chain. Preventing their assimilation by plants may be a first step towards the total recovery of contaminated areas. METHODS: The possibility of displacing radionuclides from the most superficial soil layers and their subsequent stabilisation at lower levels were investigated in laboratory trials. An experimental system reproducing the environmental conditions of contaminated areas was designed in plastic columns. A radiopolluted soil sample was treated with solutions containing ions normally used in fertilisation (NO(3)(-), NH(4)(+), PO(4)(--- )and K(+)). RESULTS: Contaminated soils treated with an acid solution of ions NO(3)(-), PO(4)(--- )and K(+), undergo a reduction of radioactivity up to 35%, after a series of washes which simulate one year's rainfall. The capacity of the deepest soil layers to immobilize the radionuclides percolated from the superficial layers was also confirmed. CONCLUSION: The migration of radionuclides towards deeper soil layers, following chemical treatments, and their subsequent stabilization reduces bioavailability in the uppermost soil horizon, preventing at the same time their transfer into the water-bearing stratum
An assessment of best practices of extreme weather insurance and directions for a more resilient society
Extreme weather resilience has been defined as being based on three pillars: resistance (the ability to lower impacts), recovery (the ability to bounce back), and adaptive capacity (the ability to learn and improve). These resilience pillars are important both before and after the occurrence of extreme weather events. Extreme weather insurance can influence these pillars of resilience depending on how particular insurance mechanisms are structured. We explore how the lessons learnt from the current best insurance practices can improve resilience to extreme weather events. We employ an extensive inventory of private property and agricultural crop insurance mechanisms to conduct a multi-criteria analysis of insurance market outcomes. We draw conclusions regarding the patterns in the best practice from six European countries to increase resilience. We suggest that requirements to buy a bundle extreme weather event insurance with general insurance packages are strengthened and supported with structures to financing losses through public-private partnerships. Moreover, support for low income households through income vouchers could be provided. Similarly, for the agricultural sector we propose moving towards comprehensive crop yield insurance linked to general agricultural subsidies. In both cases a nationally representative body can coordinate the various stakeholders into acting in concert
Functional Interactions between KCNE1 C-Terminus and the KCNQ1 Channel
The KCNE1 gene product (minK protein) associates with the cardiac KvLQT1 potassium channel (encoded by KCNQ1) to create the cardiac slowly activating delayed rectifier, IKs. Mutations throughout both genes are linked to the hereditary cardiac arrhythmias in the Long QT Syndrome (LQTS). KCNE1 exerts its specific regulation of KCNQ1 activation via interactions between membrane-spanning segments of the two proteins. Less detailed attention has been focused on the role of the KCNE1 C-terminus in regulating channel behavior. We analyzed the effects of an LQT5 point mutation (D76N) and the truncation of the entire C-terminus (Δ70) on channel regulation, assembly and interaction. Both mutations significantly shifted voltage dependence of activation in the depolarizing direction and decreased IKs current density. They also accelerated rates of channel deactivation but notably, did not affect activation kinetics. Truncation of the C-terminus reduced the apparent affinity of KCNE1 for KCNQ1, resulting in impaired channel formation and presentation of KCNQ1/KCNE1 complexes to the surface. Complete saturation of KCNQ1 channels with KCNE1-Δ70 could be achieved by relative over-expression of the KCNE subunit. Rate-dependent facilitation of K+ conductance, a key property of IKs that enables action potential shortening at higher heart rates, was defective for both KCNE1 C-terminal mutations, and may contribute to the clinical phenotype of arrhythmias triggered by heart rate elevations during exercise in LQTS mutations. These results support several roles for KCNE1 C-terminus interaction with KCNQ1: regulation of channel assembly, open-state destabilization, and kinetics of channel deactivation
87Sr/86Sr dating of coralline algal limestones and its implications for the tectono-stratigraphic evolution of the eastern Prebetic (Spain)
The use of 87Sr/86Sr chronostratigraphy for dating marine carbonates is a powerful method in tectono-stratigraphic analysis of fold-and-thrust belts. In this paper, we present the results of 87Sr/86Sr dating of Early Miocene coralline algal limestones, which constrain the age of foreland folding in the eastern Prebetic Zone of the Betic Cordilleras (Spain). The first folding phase took place between 23.6 and 19.0 Ma, associated with erosion and the subsequent deposition of coralline algal limestones. Deposition of these limestones was terminated by drowning and subsequent folding between 21.5 and 17.2 Ma. Inferred regional variations in the ages of folds in the order of 1-2 m.y. are thought to reflect the sequential, and therefore intrinsically diachronous growth of fold belts. The depositional history was primarily controlled by these tectonic movements, even though eustasy may have contributed to the drowning of the algal carbonate platforms. The unconformities which bound the algal limestones probably formed in direct response to the thrust emplacement of the Betic nappe pile and reflect the northward migration of the peripheral bulge and foreland basin