20 research outputs found

    Mir-382 Promotes Differentiation of Rat Liver Progenitor Cell WB-F344 by Targeting Ezh2

    Get PDF
    Background/Aims: Liver progenitor cells (LPCs) were considered as a promising hepatocyte source of cell therapy for liver disease due to their self-renewal and differentiation capacities, while little is known about the mechanism of LPC differentiate into hepatocytes. This study aims to explore the effect of miR-382, a member of Dlk1-Dio3 microRNA cluster, during hepatic differentiation from LPCs. Methods: In this study, we used rat liver progenitor cell WB-F344 as LPC cell model and HGF as inducer to simulate the process of LPCs hepatic differentiation, then microRNAs were quantified by qPCR. Next, WB-F344 cell was transfected with miR-382 mimics, then hepatocyte cell trait was characterized by multiple experiments, including that periodic acid schiff staining and cellular uptake and excretion of indocyanine green to evaluate the hepatocellular function, qPCR and Western Blotting analysis to detect the hepatocyte-specific markers (ALB, Ttr, Apo E and AFP) and transmission electron microscopy to observe the hepatocellular morphology. Moreover, Luciferase reporter assay was used to determine whether Ezh2 is the direct target of miR-382. Results: We found that miR-382 increased gradually and was inversely correlated with the potential target, Ezh2, during WB-F344 hepatic differentiation. In addition, functional studies indicated that miR-382 increased the level of hepatocyte-specific genes. Conclusions: This study demonstrates that miR-382 may be a novel regulator of LPCs differentiation by targeting Ezh2

    Potential Chemotherapeutic Effect of Selenium for Improved Canceration of Esophageal Cancer

    No full text
    Esophageal squamous cell carcinoma is the most common type of esophageal cancer and accounts for 5% of malignant tumor deaths. Recent research suggests that chronic inflammation and DNA damage may drive the onset of esophageal squamous cell carcinoma, implying that lowering chronic inflammation and DNA damage compounds may provide chemo-prevention. According to epidemiological and experimental evidence, selenium is linked to a lower risk of several malignancies, including esophageal squamous cell carcinoma. However, its exact mechanism is still unclear. In the present study, we used cell lines and a 4-NQO mice model to explore the anti-cancer mechanism of four types of selenium. Our findings indicated that selenium inhibited the proliferation, colony formation, and ROS level of ESCC cell lines in a time-dependent manner. Intriguingly, selenium treatment impeded 4-NQO-induced high-grade intraepithelial neoplasia and reduced the number of positive inflammatory cells by preserving DNA from oxidative damage. In addition, selenium significantly decreased the expression of Ki-67 and induced apoptosis. This study demonstrates that selenium has a significant chemo-preventive effect on ESCC by reducing high-grade dysplasia to low-grade dysplasia. For the first time, selenium was shown to slow down the progression of esophageal cancer by lowering inflammation and oxidative DNA damage

    Metabolic Characterization of Myocardial Infarction Using GC-MS-Based Tissue Metabolomics

    No full text

    DACT1 Involvement in the Cytoskeletal Arrangement of Cardiomyocytes in Atrial Fibrillation by Regulating Cx43

    No full text
    Abstract Objective: To determine the role of the dishevelled binding antagonist of beta catenin 1 (DACT1) in the cytoskeletal arrangement of cardiomyocytes in atrial fibrillation (AF). Methods: The DACT1 expression and its associations with the degree of fibrosis and β-catenin in valvular disease patients were analyzed by immunohistochemistry and Masson’s staining. DACT1 was overexpressed in the atrial myocyte cell line (HL-1) and the cardiac cell line (H9C2) by adenoviral vectors. Alterations in the fibrous actin (F-actin) content and organization and the expression of β-catenin were detected by flow cytometry, immunofluorescence, and Western blotting. Additionally, the association of DACT1 with gap junctions connexin 43 (Cx43) was detected by immunohistochemistry, immunofluorescence, and Western blotting. Results: Decreased cytoplasmic DACT1 expression in the myocardium was associated with AF (P=0.037) and a high degree of fibrosis (weak vs. strong, P=0.028; weak vs. very strong, P=0.029). A positive association was observed between DACT1 and β-catenin expression in clinical samples (P=0.028, Spearman’s rho=0.408). Furthermore, overexpression of DACT1 in HL-1 and H9C2 cells induced an increase in β-catenin and subsequent partial colocalization of DACT1 and β-catenin. In addition, F-actin content and organization were enhanced. Interestingly, DACT1 was positively correlated with the Cx43 expression in clinical samples (P=0.048, Spearman’s rho=0.370) and changed the Cx43 distribution in cardiac cell lines. Conclusion: DACT1 proved to be a novel AF-related gene by regulating Cx43 via cytoskeletal organization induced by β-catenin accumulation in cardiomyocytes. DACT1 could thus serve as a potential therapeutic marker for AF

    Efficient synthesis of bio-derived polycarbonates from dimethyl carbonate and isosorbide: regulatingexo-OH andendo-OH reactivity by ionic liquids

    No full text
    It is an immense challenge to design catalysts for synthesizing high molecular weight polycarbonates using CO2, CO2-based compounds, or biorenewable chemicals as building blocks. To this end, an eco-compatible approach to synthesizing polycarbonates from biorenewable isosorbide and CO2-derived dimethyl carbonate (DMC) has been exploited: the regulation of poly(isosorbide carbonate) molecular weight can be achieved by modifying the cation structure of ionic liquid (IL) catalysts. The hydrogen bond donating and accepting ability of ILs can be altered by adjusting the cation structure, which successfully leads to the tunability of the intrinsic imbalance reactivity ofexo-OH andendo-OH in isosorbide. Moreover, these ILs exclusively activate the carbonyl carbon of DMC for accelerating the polymerization reaction. These features are appealing superiorities of ILs as compared to catalysts involving metallic elements. The [Emim]Br catalyst remarkably decreased the imbalanced reactivity of -OH groups of isosorbide, and exhibited the highest catalytic activity. With the presence of [Emim]Br, the poly(isosorbide carbonate) (PIC) weight-average molecular weight and glass transition temperature attained were 52 100 g mol(-1)and 156 degrees C, respectively. Additionally, according to experimental results, DFT calculations, andin situ(1)H NMR analysis, a possible polymerization mechanism indicates that bromine-derived ILs participate in nucleophilic-electrophilic dual-activation in catalyzing PIC synthesis. Our work offers a direction to design catalysts for synthesizing PICs with higher molecular weights through an eco-compatible route

    Synthesis of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids

    No full text
    The synthesis of high-molecular-weight bioderived polycarbonates via green routes and regulation of molecular weight is of great significance and is highly challenging. Herein, a green sequential approach toward the synthesis of bio-derived polycarbonates with adjustable molecular weights from isosorbide and dimethyl carbonate (DMC) has been developed by employing ionic liquids (ILs) as a class of eco-friendly catalysts. The structures of IL catalysts can be designed readily to control the molecular weight of isosorbide-derived polycarbonates (PIC), which is an attractive advantage of IL catalysts instead of the conventional metal-containing catalysts. In the presence of the [Bmim][4-I-Phen] catalyst, the PIC weight-average molecular weight (M-w) can reach 50 300 g mol(-1). By the combination of the experimental results and DFT calculations, an IL anion-cation synergistic catalytic polymerization mechanism has been proposed, which reveals the nucleophile-electrophile dual activation by H-bonds and charge-charge interactions in catalyzing the formation of PIC. The significance of this study is that it provides guidance for developing IL catalysts for synthesizing higher molecular weight polycarbonates, thereby conveniently leading to a variety of polymers with tunable properties
    corecore