226 research outputs found

    Issue 2 - “Update on adverse respiratory effects of indoor air pollution” Part 1): Indoor air pollution and respiratory diseases: A general update and a Portuguese perspective

    Get PDF
    Objective To quantify the impact of different air pollutants on respiratory health based on robust estimates based on international data and to summarise the evidence of associations between indoor exposure to those pollutants and respiratory morbidity in the Portuguese population. Results Several systematic reviews and meta-analyses (MA) at the world level demonstrate the impact of indoor air quality on respiratory health, with indoor particulate matter and gasses exerting a significant effect on the airways. Volatile organic compounds (VOC) have been related to asthma and lung cancer. However, only meta-analyses on biomass use allowed documentation of long-term respiratory effects. While early publications concerning Portuguese-based populations mainly focused on indoor exposure to environmental tobacco smoke, later studies relocated the attention to relevant exposure environments, such as day care buildings, schools, residences and nursing homes. Looking at the pooled effects from the reviewed studies, high levels of carbon dioxide and particulate matter in Portuguese buildings were significantly associated with asthma and wheezing, with VOC and fungi showing a similar effect in some instances. Conclusions Despite the significant reduction of indoor air pollution effects after the 2008 indoor smoking prohibition in public buildings, studies show that several indoor air parameters are still significantly associated with respiratory health in Portugal. The country shares the worldwide necessity of standardisation of methods and contextual data to increase the reach of epidemiological studies on household air pollution, allowing a weighted evaluation of interventions and policies focused on reducing the associated respiratory morbidity

    Development and validation of exhaled breath condensate microRNAs to identify and endotype asthma in children

    Get PDF
    Detection and quantification of microRNAs (miRNAs) in exhaled breath condensate (EBC) has been poorly explored. Therefore we aimed to assess miRNAs in EBC as potential biomarkers to diagnose and endotype asthma in school aged children. In a cross sectional, nested case control study, all the asthmatic children (n = 71) and a random sample of controls (n = 115), aged 7 to 12 years, attending 71 classrooms from 20 local schools were selected and arbitrarily allocated to the development or validation set. Participants underwent skin-prick testing, spirometry with bronchodilation, had exhaled level of nitric oxide determined and EBC collected. Based on previous studies eleven miRNAs were chosen and analyzed in EBC by reverse transcription-quantitative real-time PCR. Principal component analysis was applied to identify miRNAs profiles and associations were estimated using regression models. In the development set (n = 89) two clusters of miRNAs were identified. After adjustments, cluster 1 and three of its clustered miRNAs, miR-126-3p, miR-133a-3p and miR-145-5p were positively associated with asthma. Moreover miR-21-5p was negatively associated with symptomatic asthma and positively associated with positive bronchodilation without symptoms. An association was also found between miR-126-3p, cluster 2 and one of its clustered miRNA, miR-146-5p, with higher FEF25-75 reversibility. These findings were confirmed in the validation set (n = 97) where two identical clusters of miRNAs were identified. Additional significant associations were observed between miR-155-5p with symptomatic asthma, negative bronchodilation with symptoms and positive bronchodilation without symptoms. We showed that microRNAs can be measured in EBC of children and may be used as potential biomarkers of asthma, assisting asthma endotype establishment.Authors gratefully acknowledge the funding by Fundação para a Ciência e Tecnologia through the Project NORTE-01-0145-FEDER-000010 - Health, Comfort and Energy in the Built Environment (HEBE), cofinanced by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER) and EXALAR 21 project financed by FEDER/FNR and by Fundação para a Ciência e Tecnologia (EXALAR 21 02/SAICT/2017 - Project nº 30193). FCM kindly acknowledges the scholarship SFRH/BD/144563/2019 granted by Fundação para a Ciência e Tecnologia, as well as the Fulbright Research Grant 2019/2020 granted by Fulbright Portugal. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Influence of Eating at Home on Dietary Diversity and Airway Inflammation in Portuguese School-Aged Children

    Get PDF
    Considering the negative impact of a lack of dietary diversity on children's nutritional status, we aimed to describe dietary variety according to eating at home frequency and assessed its association with respiratory outcomes in school-aged children. This cross-sectional study included 590 children (49% girls) aged 7 to 12 years from 20 public schools located in city of Porto, Portugal. Daily frequency of eating at home groups were calculated and dietary diversity was calculated using a 10-food group score from a 24 h recall questionnaire. Spirometry and exhaled nitric oxide levels (eNO; = 35 ppb) were assessed. The comparison of diet diversity according to the groups was performed by ANOVA and ANCOVA. The association between dietary diversity and respiratory outcomes was examined using regression models. In multivariate analysis, children in the highest group of eating at home episodes (>= 4 occasions) obtained the lowest dietary diversity mean score, while the lowest group (= 5 food groups) significantly decreased the odds of having an eNO >= 35. Diet diversity might decrease the chance of airway inflammation among children. However, having more eating episodes at home could be a barrier to a more diverse diet

    Indoor air pollution and respiratory diseases: A general update and a Portuguese perspective

    Get PDF
    Objective: To quantify the impact of different air pollutants on respiratory health based on robust estimates based on international data and to summarise the evidence of associations between indoor exposure to those pollutants and respiratory morbidity in the Portuguese population. Results: Several systematic reviews and meta-analyses (MA) at the world level demonstrate the impact of indoor air quality on respiratory health, with indoor particulate matter and gasses exerting a significant effect on the airways. Volatile organic compounds (VOC) have been related to asthma and lung cancer. However, only meta-analyses on biomass use allowed documentation of long-term respiratory effects. While early publications concerning Portuguese-based populations mainly focused on indoor exposure to environmental tobacco smoke, later studies relocated the attention to relevant exposure environments, such as day care buildings, schools, residences and nursing homes. Looking at the pooled effects from the reviewed studies, high levels of carbon dioxide and particulate matter in Portuguese buildings were significantly associated with asthma and wheezing, with VOC and fungi showing a similar effect in some instances. Conclusions: Despite the significant reduction of indoor air pollution effects after the 2008 indoor smoking prohibition in public buildings, studies show that several indoor air parameters are still significantly associated with respiratory health in Portugal. The country shares the worldwide necessity of standardisation of methods and contextual data to increase the reach of epidemiological studies on household air pollution, allowing a weighted evaluation of interventions and policies focused on reducing the associated respiratory morbidity.proofepub_ahead_of_prin

    Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma?

    Get PDF
    Obesity has been repeatedly linked to asthma, and several potential mechanisms have been proposed in the etiologies of the obese-asthma phenotype. Considering that lungs play an important role in systemic pH and acidbase regulation, are a key organ in asthma development, and that nutritional inadequacy of several nutrients and high dietary acid load can affect airway inflammation and reactivity, we aimed to test the hypothesis that dietary acid load may be associated with asthma in children. Data on 699 children (52% females), aged 712 years, were analyzed. Anthropometric measurements were performed to assess body mass index. Dietary acid load was calculated using potential renal acid load (PRAL) equations from a 24 h dietary recall administrated to children. Adjusted PRAL for total energy intake was applied with the use of the residual method. Lung function and airway reversibility were assessed with spirometry. Asthma was defined by a positive bronchodilation or self-reported medical diagnosis with reported symptoms (wheezing, dyspnea, or dry cough) in the past 12 months. After adjustment for energy intake, sex, age, parents education level, and physical activity, positive and significant associations were found between asthma and PRAL [odds ratio (OR) = 1.953, 95% CI = 1.024, 3.730) in overweight/obese children. Our findings suggest that dietary acid load might be a possible mechanism in overweight/obese-asthma phenotype development.</jats:p

    Installing hydrolytic activity into a completely <i>de novo </i>protein framework

    Get PDF
    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine–histidine–glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis

    Measuring Health Utilities in Children and Adolescents: A Systematic Review of the Literature.

    Get PDF
    BACKGROUND: The objective of this review was to evaluate the use of all direct and indirect methods used to estimate health utilities in both children and adolescents. Utilities measured pre- and post-intervention are combined with the time over which health states are experienced to calculate quality-adjusted life years (QALYs). Cost-utility analyses (CUAs) estimate the cost-effectiveness of health technologies based on their costs and benefits using QALYs as a measure of benefit. The accurate measurement of QALYs is dependent on using appropriate methods to elicit health utilities. OBJECTIVE: We sought studies that measured health utilities directly from patients or their proxies. We did not exclude those studies that also included adults in the analysis, but excluded those studies focused only on adults. METHODS AND FINDINGS: We evaluated 90 studies from a total of 1,780 selected from the databases. 47 (52%) studies were CUAs incorporated into randomised clinical trials; 23 (26%) were health-state utility assessments; 8 (9%) validated methods and 12 (13%) compared existing or new methods. 22 unique direct or indirect calculation methods were used a total of 137 times. Direct calculation through standard gamble, time trade-off and visual analogue scale was used 32 times. The EuroQol EQ-5D was the most frequently-used single method, selected for 41 studies. 15 of the methods used were generic methods and the remaining 7 were disease-specific. 48 of the 90 studies (53%) used some form of proxy, with 26 (29%) using proxies exclusively to estimate health utilities. CONCLUSIONS: Several child- and adolescent-specific methods are still being developed and validated, leaving many studies using methods that have not been designed or validated for use in children or adolescents. Several studies failed to justify using proxy respondents rather than administering the methods directly to the patients. Only two studies examined missing responses to the methods administered with respect to the patients' ages

    Breath biomarkers in idiopathic pulmonary fibrosis:A systematic review 11 Medical and Health Sciences

    Get PDF
    Background: Exhaled biomarkers may be related to disease processes in idiopathic pulmonary fibrosis (IPF) however their clinical role remains unclear. We performed a systematic review to investigate whether breath biomarkers discriminate between patients with IPF and healthy controls. We also assessed correlation with lung function, ability to distinguish diagnostic subgroups and change in response to treatment. Methods: MEDLINE, EMBASE and Web of Science databases were searched. Study selection was limited to adults with a diagnosis of IPF as per international guidelines. Results: Of 1014 studies screened, fourteen fulfilled selection criteria and included 257 IPF patients. Twenty individual biomarkers discriminated between IPF and controls and four showed correlation with lung function. Meta-analysis of three studies indicated mean (± SD) alveolar nitric oxide (CalvNO) levels were significantly higher in IPF (8.5 ± 5.5 ppb) than controls (4.4 ± 2.2 ppb). Markers of oxidative stress in exhaled breath condensate, such as hydrogen peroxide and 8-isoprostane, were also discriminatory. Two breathomic studies have isolated discriminative compounds using mass spectrometry. There was a lack of studies assessing relevant treatment and none assessed differences in diagnostic subgroups. Conclusions: Evidence suggests CalvNO is higher in IPF, although studies were limited by small sample size. Further breathomic work may identify biomarkers with diagnostic and prognostic potential

    Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- And Rab8-Dependent and recycling endosome-independent

    Get PDF
    The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the m1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells. © 2014 Bertuccio et al
    corecore