1,906 research outputs found

    GRB 090227B: the missing link between the genuine short and long GRBs

    Full text link
    The time-resolved spectral analysis of GRB090227B, made possible by the Fermi-GBM data, allows to identify in this source the missing link between the genuine short and long GRBs. Within the Fireshell model [...] we predict genuine short GRBs: bursts with the same inner engine of the long bursts but endowed with a severely low value of the Baryon load, B<~5x10^{-5}. A first energetically predominant emission occurs at the transparency of the e+e- plasma, the Proper-GRB (P-GRB), followed by a softer emission, the extended afterglow. The typical separation between the two emissions is expected to be [...] 10^{-3}-10^{-2}s. We identify the P-GRB [...] in the first 96ms of emission, where a thermal component with [...] kT=(517+/-28)keV and a flux comparable with the non thermal part of the spectrum is observed. This non thermal component as well as the subsequent emission, where there is no evidence for a thermal spectrum, is identified with the extended afterglow. We deduce a theoretical cosmological redshift z=1.61+/-0.14. We then derive the total energy E^{tot}_{e+e-}=(2.83+/-0.15)x10^{53}erg, [...] B=(4.13+/-0.05)x10^{-5}, the Lorentz factor at transparency \Gamma_tr=(1.44+/-0.01)x10^4, and the intrinsic duration \Delta t'~0.35s. We also determine the average density of the CircumBurst Medium (CBM), =(1.90+/-0.20)x10^{-5} #/cm^3. There is no evidence of beaming in the system. In view of the energetics and of the Baryon load of the source, as well as of the low interstellar medium and of the intrinsic time scale of the signal, we identify the GRB progenitor as a binary neutron star. From the recent progress in the theory of neutron stars, we obtain masses of the stars m_1=m_2=1.34M_Sun and their corresponding radii R_1=R_2=12.24km and thickness of their crusts ~0.47km, consistent with the above values of the Baryon load, of the energetics and of the time duration of the event.Comment: 14 pages, 14 figures, new version with some updated references, matching the one actually appeared on Ap

    GRB970228 and a class of GRBs with an initial spikelike emission

    Full text link
    (Shortened) The Swift and HETE-2 discovery of an afterglow associated possibly with short GRBs opened the new problematic of their nature and classification. This has been further enhanced by the GRB060614 observation and by a re-analysis of the BATSE catalog leading to the identification of a new GRB class with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". We plan: a) to fit this new class of "hybrid" sources within our "canonical GRB" scenario, where all GRBs are generated by a "common engine" (i.e. the gravitational collapse to a black hole); b) to propose GRB970228 as the prototype of the such a class. We analyze BeppoSAX data on GRB970228 in the 40-700 keV and 2-26 keV energy bands within the "fireshell" model. We find that GRB970228 is a "canonical GRB", like e.g. GRB050315, with the main peculiarity of a particularly low CircumBurst Medium (CBM) average density n_{cbm}~10^{-3} #/cm^3. We also simulate the light curve corresponding to a rescaled CBM density profile with n_{cbm}=1 #/cm^3. From such a comparison it follows that the total time-integrated luminosity is a faithful indicator of the GRB nature, contrary to the peak luminosity which is merely a function of the CBM density. We call attention on discriminating the short GRBs between the "genuine" and the "fake" ones. The "genuine" ones are intrinsically short, with baryon loading B \la 10^{-5}, as stated in our original classification. The "fake" ones, characterized by an initial spikelike emission followed by an extended emission lasting tenths of seconds, have a baryon loading 10^{-4} \la B \leq 10^{-2}. They are observed as such only due to an underdense CBM consistent with a galactic halo environment which deflates the afterglow intensity.Comment: 4 pages, 4 figures, to appear on A&A Letter

    GRB060218 and GRBs associated with Supernovae Ib/c

    Full text link
    We plan to fit the complete gamma- and X-ray light curves of the long duration GRB060218, including the prompt emission, in order to clarify the nature of the progenitors and the astrophysical scenario of the class of GRBs associated to SNe Ib/c. The initial total energy of the electron-positron plasma E_{e^\pm}^{tot}=2.32\times 10^{50} erg has a particularly low value similarly to the other GRBs associated with SNe. For the first time we observe a baryon loading B=10^{-2} which coincides with the upper limit for the dynamical stability of the fireshell. The effective CircumBurst Medium (CBM) density shows a radial dependence n_{cbm} \propto r^{-\alpha} with 1.0<\alpha<1.7 and monotonically decreases from 1 to 10^{-6} particles/cm^3. Such a behavior is interpreted as due to a fragmentation in the fireshell. Analogies with the fragmented density and filling factor characterizing Novae are outlined. The fit presented is particularly significant in view of the complete data set available for GRB060218 and of the fact that it fulfills the Amati relation. We fit GRB060218, usually considered as an X-Ray Flash (XRF), as a "canonical GRB" within our theoretical model. The smallest possible black hole, formed by the gravitational collapse of a neutron star in a binary system, is consistent with the especially low energetics of the class of GRBs associated with SNe Ib/c. We give the first evidence for a fragmentation in the fireshell. Such a fragmentation is crucial in explaining both the unusually large T_{90} and the consequently inferred abnormal low value of the CBM effective density.Comment: 4 pages, 3 figures, to appear in A&A Letter

    The Amati relation in the "fireshell" model

    Full text link
    (Shortened) CONTEXT: [...] AIMS: Motivated by the relation proposed by Amati and collaborators, we look within the ``fireshell'' model for a relation between the peak energy E_p of the \nu F_\nu total time-integrated spectrum of the afterglow and the total energy of the afterglow E_{aft}, which in our model encompasses and extends the prompt emission. METODS: [...] Within the fireshell model [...] We can then build two sets of ``gedanken'' GRBs varying the total energy of the electron-positron plasma E^{e^\pm}_{tot} and keeping the same baryon loading B of GRB050315. The first set assumes for the effective CBM density the one obtained in the fit of GRB050315. The second set assumes instead a constant CBM density equal to the average value of the GRB050315 prompt phase. RESULTS: For the first set of ``gedanken'' GRBs we find a relation E_p\propto (E_{aft})^a, with a = 0.45 \pm 0.01, whose slope strictly agrees with the Amati one. Such a relation, in the limit B \to 10^{-2}, coincides with the Amati one. Instead, in the second set of ``gedanken'' GRBs no correlation is found. CONCLUSIONS: Our analysis excludes the Proper-GRB (P-GRB) from the prompt emission, extends all the way to the latest afterglow phases and is independent on the assumed cosmological model, since all ``gedanken'' GRBs are at the same redshift. The Amati relation, on the other hand, includes also the P-GRB, focuses on the prompt emission only, and is therefore influenced by the instrumental threshold which fixes the end of the prompt emission, and depends on the assumed cosmology. This may well explain the intrinsic scatter observed in the Amati relation.Comment: 4 pages, 5 figures, to appear on A&A Letter

    Pair plasma relaxation time scales

    Full text link
    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.Comment: Phys. Rev. E, in pres

    GRB060614: a "fake" short GRB from a merging binary system

    Full text link
    (Shortened) CONTEXT: [...] GRB060614 is the first nearby long duration GRB clearly not associated to a bright Ib/c supernova. Moreover, its duration (T_{90} ~ 100s) makes it hardly classifiable as a short GRB. It presents strong similarities with GRB970228, the prototype of the new class of "fake" short GRBs that appear to originate from the coalescence of binary neutron stars or white dwarfs spiraled out into the galactic halo. AIMS: Within the "canonical" GRB scenario based on the "fireshell" model, we test if GRB060614 can be a "fake" or "disguised" short GRB. [...] METHODS: We fit GRB060614 light curves in Swift's BAT (15-150keV) and XRT (0.2-10keV) energy bands. Within the fireshell model, light curves are formed by two well defined and different components: the Proper-GRB (P-GRB), emitted at the fireshell transparency, and the extended afterglow, due to the interaction between the leftover accelerated baryonic and leptonic shell and the CBM. RESULTS: We determine the two free parameters describing the GRB source within the fireshell model. [...] A small average CBM density [...] is inferred, typical of galactic halos. The first spikelike emission is identified with the P-GRB and the following prolonged emission with the extended afterglow peak.[...] CONCLUSIONS: The anomalous GRB060614 finds a natural interpretation within our canonical GRB scenario: it is a "disguised" short GRB. [...] This result points to an old binary system, likely formed by a white dwarf and a neutron star, as the progenitor of GRB060614 and well justify the absence of an associated SN Ib/c. Particularly important for further studies of the final merging process are the temporal structures in the P-GRB down to 0.1s.Comment: 7 pages, 5 figures, to appear on Astronomy & Astrophysics. This new version fixes a typo in one label of Fig.

    On the core-halo distribution of dark matter in galaxies

    Full text link
    We investigate the distribution of dark matter in galaxies by solving the equations of equilibrium of a self-gravitating system of massive fermions (`inos') at selected temperatures and degeneracy parameters within general relativity. Our most general solutions show, as a function of the radius, a segregation of three physical regimes: 1) an inner core of almost constant density governed by degenerate quantum statistics; 2) an intermediate region with a sharply decreasing density distribution followed by an extended plateau, implying quantum corrections; 3) an asymptotic, ρr2\rho\propto r^{-2} classical Boltzmann regime fulfilling, as an eigenvalue problem, a fixed value of the flat rotation curves. This eigenvalue problem determines, for each value of the central degeneracy parameter, the mass of the ino as well as the radius and mass of the inner quantum core. Consequences of this alternative approach to the central and halo regions of galaxies, ranging from dwarf to big spirals, for SgrA*, as well as for the existing estimates of the ino mass, are outlined.Comment: 8 pages, 5 figures. Accepted for publication by MNRA

    Complex networks in brain electrical activity

    Full text link
    We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activation between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i.e., with a stronger ``small worlds'' character. The comparison between both networks shows that areas known to be activated in the MMN wave are connected. In particular, the analysis supports the idea that supra-temporal and inferior frontal data work together in the processing of the differences between sounds by highlighting an increased connectivity in the response to a novel sound.Comment: 22 pages, 5 figures. Starlab preprint. This version is an attempt to include better figures (no content change

    Circular motion of neutral test particles in Reissner-Nordstr\"om spacetime

    Full text link
    We investigate the motion of neutral test particles in the gravitational field of a mass MM with charge QQ described by the Reissner-Nordstr\"om (RN) spacetime. We focus on the study of circular stable and unstable orbits around configurations describing either black holes or naked singularities. We show that at the classical radius, defined as Q2/MQ^2/M, there exist orbits with zero angular momentum due to the presence of repulsive gravity. The analysis of the stability of circular orbits indicates that black holes are characterized by a continuous region of stability. In the case of naked singularities, the region of stability can split into two non-connected regions inside which test particles move along stable circular orbits.Comment: 23 pages, 22 figures. To be published Phys. Rev.
    corecore