45 research outputs found
Complex architectures formed by alginate drops floating on liquid surfaces
We demonstrate the generation of natural polymeric structures of complex shapes and controlled composition, starting from the collision of aqueous drops of alginate with the surface of a calcium ion-based liquid. We prove that by tuning the impact velocity of the alginate drops on the target surface one can control the floating state of the drops inducing the formation of mushroom-like structures, upon alginate gelation. Besides the geometric peculiarity, the presented approach allows us to provide dual functionality to the polymeric objects, attaching different kinds of functional molecules onto their surface areas, which are immersed or not in the liquid, making such architectures attractive for the development of a novel class of bionanocomposites
Direct Transformation of Edible Vegetable Waste into Bioplastics
Bioplastics with a wide range of mechanical properties were directly obtained from industrially processed edible vegetable and cereal wastes. As model systems, we present bioplastics synthesized from wastes of parsley and spinach stems, rice hulls, and cocoa pod husks by digesting in trifluoroacetic acid (TFA), casting, and evaporation. In this way, amorphous cellulose-based plastics are formed. Moreover, many other natural elements present in these plants are carried over into the bioplastics rendering them with many exceptional thermo-physical properties. Here, we show that, due to their broad compatibility with cellulose, amorphous cellulose can be naturally plasticized with these bioplastics by simply mixing during processing. Comparison of their mechanical properties with that of various petroleum based synthetic polymers indicates that these bioplastics have equivalent mechanical properties to the nondegrading ones. This opens up possibilities for replacing some of the nondegrading polymers with the..
Biomimetic approach for liquid encapsulation with nanofibrillar cloaks.
Technologies that are able to handle microvolumes of liquids, such as microfluidics and liquid marbles, are attractive for applications that include miniaturized biological and chemical reactors, sensors, microactuators, and drug delivery systems. Inspired from natural fibrous envelopes, here, we present an innovative approach for liquid encapsulation and manipulation using electrospun nanofibers. We demonstrated the realization of non-wetting soft solids consisting of a liquid core wrapped in a hydrophobic fibrillar cloak of a fluoroacrylic copolymer and cellulose acetate. By properly controlling the wetting and mechanical properties of the fibers, we created final architectures with tunable mechanical robustness that were stable on a wide range of substrates (from paper to glass) and floated on liquid surfaces. Remarkably, the realized fiber-coated drops endured vortex mixing in a continuous oil phase at high stirring speed without bursting or water losses, favoring mixing processes inside the entrapped liquid volume. Moreover, the produced cloak can be easily functionalized by incorporating functional particles, active molecules, or drugs inside the nanofibers
Tailoring the morphology of poly(ethylene oxide)/silver triflate blends: from crystalline to self-assembled nanofibrillar structures.
Interaction of polyethylene oxide (PEO) with transition metal triflates is a newly emerging research area due to its numerous application fields, such as thin-film power conversion devices and sensors. In the present study, we demonstrate, for the first time, that PEO can solvate silver triflate organic salts in large quantities when formic acid is used as a common solvent for both. Nanocomposites with unique structural and electrical properties are fabricated by simply drop casting formic acid solutions of PEO and silver triflate salts. We present a detailed experimental study on the characterization of morphological and electrical properties of PEOâsilver triflate nanocomposite films as a function of silver triflate concentration and discuss their potential applications as humidity sensors. In particular, by increasing the concentration of the salt in the initial solution the morphological features of the formed nanocomposites can be varied from well defined microcrystals to amorphous nanofibers. Of special interest are the nanocomposite films fabricated from a 1:1 (PEO-unit:Ag+) molar ratio, since they consist of self-assembled nanofibrillar structures, which exhibit good electrical conductivity as well as highly repeatable sensitivity towards humidity
Zwitterionic nanofibers of super-glue for transparent and biocompatible multi-purpose coatings
Here we show that macrozwitterions of poly(ethyl 2-cyanoacrylate), commonly called Super Glue, can easily assemble into long and well defined fibers by electrospinning. The resulting fibrous networks are thermally treated on glass in order to create transparent coatings whose superficial
morphology recalls the organization of the initial electrospun mats. These textured coatings are characterized by low liquid adhesion and anti-staining performance. Furthermore, the low friction coefficient and excellent scratch resistance make them attractive as solid lubricants. The inherent
texture of the coatings positively affects their biocompatibility. In fact, they are able to promote the proliferation and differentiation of myoblast stem cells. Optically-transparent and biocompatible
coatings that simultaneously possess characteristics of low water contact angle hysteresis, low friction and mechanical robustness can find application in a wide range of technological sectors, from
the construction and automotive industries to electronic and biomedical devices
Management of pregnancy in autoimmune rheumatic diseases: maternal disease course, gestational and neonatal outcomes and use of medications in the prospectiveItalian P-RHEUM.it study
Objectives To investigate pregnancy outcomes in women with autoimmune rheumatic diseases (ARD) in the Italian prospective cohort study P-RHEUM.it. Methods Pregnant women with different ARD were enrolled for up to 20 gestational weeks in 29 Rheumatology Centres for 5 years (2018-2023). Maternal and infant information were collected in a web-based database. Results We analysed 866 pregnancies in 851 patients (systemic lupus erythematosus was the most represented disease, 19.6%). Maternal disease flares were observed in 135 (15.6%) pregnancies. 53 (6.1%) pregnancies were induced by assisted reproduction techniques, 61 (7%) ended in miscarriage and 11 (1.3%) underwent elective termination. Obstetrical complications occurred in 261 (30.1%) pregnancies, including 2.3% pre-eclampsia. Two cases of congenital heart block were observed out of 157 pregnancies (1.3%) with anti-Ro/SSA. Regarding treatments, 244 (28.2%) pregnancies were treated with glucocorticoids, 388 (44.8%) with hydroxychloroquine, 85 (9.8%) with conventional synthetic disease-modifying anti-rheumatic drugs and 122 (14.1%) with biological disease-modifying anti-rheumatic drugs. Live births were 794 (91.7%), mostly at term (84.9%); four perinatal deaths (0.5%) occurred. Among 790 newborns, 31 (3.9%) were small-for-gestational-age and 169 (21.4%) had perinatal complications. Exclusive maternal breast feeding was received by 404 (46.7%) neonates. The Edinburgh Postnatal Depression Scale was compiled by 414 women (52.4%); 89 (21.5%) scored positive for emotional distress. Conclusions Multiple factors including preconception counselling and treat-to-target with pregnancy-compatible medications may have contributed to mitigate disease-related risk factors, yielding limited disease flares, good pregnancy outcomes and frequency of complications which were similar to the Italian general obstetric population. Disease-specific issues need to be further addressed to plan preventative measures
Fatigue mechanisms in Al-based metallizations in power MOSFETs
Cette thĂšse, effectuĂ©e en collaboration entre le CEMES-CNRS, le laboratoire Satie (ENS Cachan) et NXP Semiconductors est motivĂ©e par la comprĂ©hension des mĂ©canismes de dĂ©faillance des dispositifs MOSFET pour les applications dans l'industrie automobile. Un facteur limitant de la fiabilitĂ© Ă long terme des modules de puissance basse tension est le vieillissement Ă©lectrothermique et/ou thermo-mĂ©canique des parties mĂ©talliques de la source: mĂ©tallisation en aluminium (ou alliage) et fils de connexion. A cause de la diffĂ©rence de coefficient de dilatation thermique entre la mĂ©tallisation les oxydes et le substrat semi-conducteur, la tempĂ©rature atteinte pendant les cycles de fonctionnement (quelques centaines de degrĂ©s), induit une dĂ©formation plastique inĂ©vitable dans le mĂ©tal, qui est le matĂ©riau le plus mou dans l'architecture complexe du MOSFET. Nous avons caractĂ©risĂ© la microstructure mĂ©tallique avant et aprĂšs les tests de vieillissement Ă©lectrothermique accĂ©lĂ©rĂ©s, en utilisant des techniques spĂ©cifiques du domaine de la mĂ©tallurgie physique: microscopie Ă©lectronique et ionique, cartographie d'orientation de grains et de la composition chimique. Pour la premiĂšre fois, la mĂ©tallisation de la source a Ă©tĂ© caractĂ©risĂ©e sous les fils de connexion, qui sont cent fois plus Ă©pais que la mĂ©tallisation. Cet emplacement est critique pour la fiabilitĂ© du composant, car le processus de soudure par ultrasons induit une dĂ©formation plastique importante qui peut affaiblir la mĂ©tallisation initiale avant le vieillissement. Ceci est peu Ă©tudiĂ© dans la littĂ©rature en raison de la difficultĂ© Ă accĂ©der Ă la mĂ©tallisation sous les fils sans altĂ©rer leur interface, souvent endommagĂ©e et fragilisĂ©e dans les modules vieillis. Nous avons mis en place des mĂ©thodes de prĂ©paration d'Ă©chantillon, basĂ©es sur le polissage ionique, pour Ă©tudier cette interface, sans introduire d'artefacts de prĂ©paration. Le processus de soudure Ă froid induit une dĂ©formation plastique sĂ©vĂšre et non uniforme dans la mĂ©tallisation sous les fils sans parvenir Ă recrĂ©er un bon contact Ă©lectrique: de petites cavitĂ©s et des rĂ©sidus d'oxyde natif, ont Ă©tĂ© systĂ©matiquement observĂ©s Ă l'interface Al / Al, dans tous les modules analysĂ©s, avant et aprĂšs vieillissement. Le mĂ©canisme principal de dĂ©faillance des modules est la gĂ©nĂ©ration et la propagation de fissures de fatigue dans l'aluminium, associĂ©e Ă une oxydation locale qui empĂȘche la fermeture de ces fissures. Sous et en dehors des fils de connexion, ces fissures traversent la mĂ©tallisation perpendiculairement Ă la surface jusqu'au substrat en silicium en suivant les joints de grains. Cette fissuration est due Ă la diffusion intergranulaire accĂ©lĂ©rĂ©e des atomes d'aluminium. Dans la zone de soudure, le phĂ©nomĂšne de fissuration parallĂšle Ă l'interface est favorisĂ© par les imperfections initiales (cavitĂ©s, oxyde). Les expĂ©riences de tomographie ionique ont montrĂ© que ces fissures sont confinĂ©es Ă l'interface fil-mĂ©tal et ne se propagent pas dans le fil malgrĂ© sa plus faible rĂ©sistance mĂ©canique (Al pur, structure Ă grains plus grands). La propagation de la fissure le long de l'interface Al/Al peut provoquer une diminution du contact entre le fil et la mĂ©tallisation de la source et Ă©ventuellement son dĂ©collement. Les fissures dans le mĂ©tal source peuvent expliquer l'augmentation locale de la rĂ©sistance et de la tempĂ©rature du module qui accĂ©lĂšre le processus de vieillissement jusqu'Ă l'Ă©chec. Cette Ă©tude a Ă©tabli de nouvelles techniques dĂ©diĂ©es et des mĂ©thodes de quantification pour Ă©valuer le vieillissement des parties mĂ©talliques des modules MOSFET. La caractĂ©risation complĂšte de l'interface soudĂ©e, intrinsĂšquement dĂ©fectueuse et la dĂ©gradation de la mĂ©tallisation pendant le vieillissement Ă©lectrothermique ouvrent la voie Ă l'amĂ©lioration possible les technologies actuelles et au dĂ©veloppement potentiel de nouveaux procĂ©dĂ©s.This thesis, a collaboration between CEMES-CNRS, Satie laboratory (ENS Cachan) and NXP Semiconductors is motivated by the comprehension of the failure mechanisms of low voltage power MOSFET devices produced for ap- plications in the automotive industry. A limiting factor for the long-term reliability of power modules is the electro- thermal and/or thermo-mechanical aging of the metallic parts of the source: Al metallization and bonding wires. At the temperature reached during the on-off operating cycles (few hundred degrees), the difference in the coefficient of thermal expansion between the metallization and the oxide and semicon- ductor parts induces an inevitable plastic deformation in the metal, which is the softest material in the complex MOSFET architecture. We have characterized the metal microstructure before and after accelerated electro-thermal aging tests, by using specific techniques from the field of the physical metallurgy: electron and ion microscopy, grain orientation and chem- ical composition mapping. For the first time the source metallization has been characterized both away and under the bonding connections, which are one hundred times thicker than the metallization layer. The latter is a critical loca- tion for the reliability assessment because the ultrasonic bonding process may weaken the initial metallization microstructure by adding an important plas- tic deformation prior to aging. This is, however, poorly stated in the literature because of the difficulty to access the metallization under the wires without damaging their bonding, which is known to be particularly weak in case of aged modules. In order to investigate the wire-metallization interface, we have set up origi- nal sample preparations, based on ion polishing, that allowed us to disclose the metallization under the bonding wires without introducing preparation artifacts in the microstructure. The bonding process induces a severe and non- uniform plastic deformation in the metallization under the wires without re- creating a good electrical contact: small cavities and native oxide residues, have been systematically observed at the Al/Al interface, in all the analyzed mod- ules, before and after aging. The main mechanism behind the device failure is the generation and propa- gation of fatigue cracks in the aluminum metallization, associated to a local Al oxidation that prevents these crack from closing. Away and under the wire bonds, they run perpendicularly from the surface down to the silicon substrate following the grain boundaries, due to an enhanced intergranular diffusion of aluminum atoms. In the bonding area, the phenomenon of parallel cracking is favored by the initial imperfections in the wire-metallization bonding. Ion to- mography experiments have shown that these cracks are confined to the wire- metal interface and do not propagate in the wire despite its lower strength (pure Al, larger grain structure). Crack propagation along the Al/Al interface can cause a contact reduction between the wire and the source metallization and eventually its failure. Such discontinuities in the metal can explain the lo- cal increase in the device resistance and temperature that accelerates the aging process until failure. This study settled new, dedicated techniques and quantification methods to as- sess the aging of the metal parts of MOSFET devices. The full characterization of the intrinsically defective interface generated by the bonding process and the metallization degradation during electro-thermal aging indicated paths to possible improvements of current technologies and potential developments of new processes
Modes de fatigue des métallisations à base d'aluminium dans les composants MOSFET de puissance
This thesis, a collaboration between CEMES-CNRS, Satie laboratory (ENS Cachan) and NXP Semiconductors is motivated by the comprehension of the failure mechanisms of low voltage power MOSFET devices produced for ap- plications in the automotive industry. A limiting factor for the long-term reliability of power modules is the electro- thermal and/or thermo-mechanical aging of the metallic parts of the source: Al metallization and bonding wires. At the temperature reached during the on-off operating cycles (few hundred degrees), the difference in the coefficient of thermal expansion between the metallization and the oxide and semicon- ductor parts induces an inevitable plastic deformation in the metal, which is the softest material in the complex MOSFET architecture. We have characterized the metal microstructure before and after accelerated electro-thermal aging tests, by using specific techniques from the field of the physical metallurgy: electron and ion microscopy, grain orientation and chem- ical composition mapping. For the first time the source metallization has been characterized both away and under the bonding connections, which are one hundred times thicker than the metallization layer. The latter is a critical loca- tion for the reliability assessment because the ultrasonic bonding process may weaken the initial metallization microstructure by adding an important plas- tic deformation prior to aging. This is, however, poorly stated in the literature because of the difficulty to access the metallization under the wires without damaging their bonding, which is known to be particularly weak in case of aged modules. In order to investigate the wire-metallization interface, we have set up origi- nal sample preparations, based on ion polishing, that allowed us to disclose the metallization under the bonding wires without introducing preparation artifacts in the microstructure. The bonding process induces a severe and non- uniform plastic deformation in the metallization under the wires without re- creating a good electrical contact: small cavities and native oxide residues, have been systematically observed at the Al/Al interface, in all the analyzed mod- ules, before and after aging. The main mechanism behind the device failure is the generation and propa- gation of fatigue cracks in the aluminum metallization, associated to a local Al oxidation that prevents these crack from closing. Away and under the wire bonds, they run perpendicularly from the surface down to the silicon substrate following the grain boundaries, due to an enhanced intergranular diffusion of aluminum atoms. In the bonding area, the phenomenon of parallel cracking is favored by the initial imperfections in the wire-metallization bonding. Ion to- mography experiments have shown that these cracks are confined to the wire- metal interface and do not propagate in the wire despite its lower strength (pure Al, larger grain structure). Crack propagation along the Al/Al interface can cause a contact reduction between the wire and the source metallization and eventually its failure. Such discontinuities in the metal can explain the lo- cal increase in the device resistance and temperature that accelerates the aging process until failure. This study settled new, dedicated techniques and quantification methods to as- sess the aging of the metal parts of MOSFET devices. The full characterization of the intrinsically defective interface generated by the bonding process and the metallization degradation during electro-thermal aging indicated paths to possible improvements of current technologies and potential developments of new processes.Cette thĂšse, effectuĂ©e en collaboration entre le CEMES-CNRS, le laboratoire Satie (ENS Cachan) et NXP Semiconductors est motivĂ©e par la comprĂ©hension des mĂ©canismes de dĂ©faillance des dispositifs MOSFET pour les applications dans l'industrie automobile. Un facteur limitant de la fiabilitĂ© Ă long terme des modules de puissance basse tension est le vieillissement Ă©lectrothermique et/ou thermo-mĂ©canique des parties mĂ©talliques de la source: mĂ©tallisation en aluminium (ou alliage) et fils de connexion. A cause de la diffĂ©rence de coefficient de dilatation thermique entre la mĂ©tallisation les oxydes et le substrat semi-conducteur, la tempĂ©rature atteinte pendant les cycles de fonctionnement (quelques centaines de degrĂ©s), induit une dĂ©formation plastique inĂ©vitable dans le mĂ©tal, qui est le matĂ©riau le plus mou dans l'architecture complexe du MOSFET. Nous avons caractĂ©risĂ© la microstructure mĂ©tallique avant et aprĂšs les tests de vieillissement Ă©lectrothermique accĂ©lĂ©rĂ©s, en utilisant des techniques spĂ©cifiques du domaine de la mĂ©tallurgie physique: microscopie Ă©lectronique et ionique, cartographie d'orientation de grains et de la composition chimique. Pour la premiĂšre fois, la mĂ©tallisation de la source a Ă©tĂ© caractĂ©risĂ©e sous les fils de connexion, qui sont cent fois plus Ă©pais que la mĂ©tallisation. Cet emplacement est critique pour la fiabilitĂ© du composant, car le processus de soudure par ultrasons induit une dĂ©formation plastique importante qui peut affaiblir la mĂ©tallisation initiale avant le vieillissement. Ceci est peu Ă©tudiĂ© dans la littĂ©rature en raison de la difficultĂ© Ă accĂ©der Ă la mĂ©tallisation sous les fils sans altĂ©rer leur interface, souvent endommagĂ©e et fragilisĂ©e dans les modules vieillis. Nous avons mis en place des mĂ©thodes de prĂ©paration d'Ă©chantillon, basĂ©es sur le polissage ionique, pour Ă©tudier cette interface, sans introduire d'artefacts de prĂ©paration. Le processus de soudure Ă froid induit une dĂ©formation plastique sĂ©vĂšre et non uniforme dans la mĂ©tallisation sous les fils sans parvenir Ă recrĂ©er un bon contact Ă©lectrique: de petites cavitĂ©s et des rĂ©sidus d'oxyde natif, ont Ă©tĂ© systĂ©matiquement observĂ©s Ă l'interface Al / Al, dans tous les modules analysĂ©s, avant et aprĂšs vieillissement. Le mĂ©canisme principal de dĂ©faillance des modules est la gĂ©nĂ©ration et la propagation de fissures de fatigue dans l'aluminium, associĂ©e Ă une oxydation locale qui empĂȘche la fermeture de ces fissures. Sous et en dehors des fils de connexion, ces fissures traversent la mĂ©tallisation perpendiculairement Ă la surface jusqu'au substrat en silicium en suivant les joints de grains. Cette fissuration est due Ă la diffusion intergranulaire accĂ©lĂ©rĂ©e des atomes d'aluminium. Dans la zone de soudure, le phĂ©nomĂšne de fissuration parallĂšle Ă l'interface est favorisĂ© par les imperfections initiales (cavitĂ©s, oxyde). Les expĂ©riences de tomographie ionique ont montrĂ© que ces fissures sont confinĂ©es Ă l'interface fil-mĂ©tal et ne se propagent pas dans le fil malgrĂ© sa plus faible rĂ©sistance mĂ©canique (Al pur, structure Ă grains plus grands). La propagation de la fissure le long de l'interface Al/Al peut provoquer une diminution du contact entre le fil et la mĂ©tallisation de la source et Ă©ventuellement son dĂ©collement. Les fissures dans le mĂ©tal source peuvent expliquer l'augmentation locale de la rĂ©sistance et de la tempĂ©rature du module qui accĂ©lĂšre le processus de vieillissement jusqu'Ă l'Ă©chec. Cette Ă©tude a Ă©tabli de nouvelles techniques dĂ©diĂ©es et des mĂ©thodes de quantification pour Ă©valuer le vieillissement des parties mĂ©talliques des modules MOSFET. La caractĂ©risation complĂšte de l'interface soudĂ©e, intrinsĂšquement dĂ©fectueuse et la dĂ©gradation de la mĂ©tallisation pendant le vieillissement Ă©lectrothermique ouvrent la voie Ă l'amĂ©lioration possible les technologies actuelles et au dĂ©veloppement potentiel de nouveaux procĂ©dĂ©s
Analyse du vieillissement de la métallisation d'un MOSFET par la distribution du potentiel de source
International audienceLa reconstruction de la couche de métallisation est l'un des mécanismes de dégradation le plus observé dans les composants électroniques de puissance de type smart power soumis à des contraintes thermiques sévÚres telle que les courts-circuits répétitifs en raison des contraintes thermomécaniques imposées : variation et niveaux de température élevés. Pour évaluer le niveau de dégradation de la métallisation, le principal indicateur de vieillissement est la mesure de la résistance à l'état passant RDSON qui est systématiquement associée à l'évolution de la résistance du métal. L'étude présentée dans cet article apporte des éléments de compréhension sur l'effet de la reconstruction de la métallisation sur le vieillissement et la défaillance du composant de puissance à travers une large analyse expérimentale axée sur la mesure de la cartographie du potentiel de source au cours du vieillissement</p