280 research outputs found

    Numerical Models of Binary Neutron Star System Mergers. I.: Numerical Methods and Equilibrium Data for Newtonian Models

    Get PDF
    The numerical modeling of binary neutron star mergers has become a subject of much interest in recent years. While a full and accurate model of this phenomenon would require the evolution of the equations of relativistic hydrodynamics along with the Einstein field equations, a qualitative study of the early stages on inspiral can be accomplished by either Newtonian or post-Newtonian models, which are more tractable. In this paper we offer a comparison of results from both rotating and non-rotating (inertial) frame Newtonian calculations. We find that the rotating frame calculations offer significantly improved accuracy as compared with the inertial frame models. Furthermore, we show that inertial frame models exhibit significant and erroneous angular momentum loss during the simulations that leads to an unphysical inspiral of the two neutron stars. We also examine the dependence of the models on initial conditions by considering initial configurations that consist of spherical neutron stars as well as stars that are in equilibrium and which are tidally distorted. We compare our models those of Rasio & Shapiro (1992,1994a) and New & Tohline (1997). Finally, we investigate the use of the isolated star approximation for the construction of initial data.Comment: 32 pages, 19 gif figures, manuscript with postscript figures available at http://www.astro.sunysb.edu/dswesty/docs/nspap1.p

    Nucleosynthesis in the Outflow from Gamma Ray Burst Accretion Disks

    Full text link
    We examine the nucleosynthesis products that are produced in the outflow from rapidly accreting disks. We find that the type of element synthesis varies dramatically with the degree of neutrino trapping in the disk and therefore the accretion rate of the disk. Disks with relatively high accretion rates such as 10 M_solar/s can produce very neutron rich nuclei that are found in the r process. Disks with more moderate accretion rates can produce copious amounts of Nickel as well as the light elements such as Lithium and Boron. Disks with lower accretion rates such as 0.1 M_solar/s produce large amounts of Nickel as well as some unusual nuclei such as Ti-49, Sc-45, Zn-64, and Mo-92. This wide array of potential nucleosynthesis products is due to the varying influence of electron neutrinos and antineutrinos emitted from the disk on the neutron-to-proton ratio in the outflow. We use a parameterization for the outflow and discuss our results in terms of entropy and outflow acceleration.Comment: 12 pages, 12 figures; submitted to Ap

    Helium Star/Black Hole Mergers: a New Gamma-Ray Burst Model

    Full text link
    We present a model for gamma-ray bursts (GRB's) in which a stellar mass black hole acquires a massive accretion disk by merging with the helium core of its red giant companion. The black hole enters the helium core after it, or its neutron star progenitor, first experiences a common envelope phase that carries it inwards through the hydrogen envelope. Accretion of the last several solar masses of helium occurs on a time scale of roughly a minute and provides a neutrino luminosity of approximately 10^51 - 10^52 erg/s. Neutrino annihilation, 0.01% to 0.1% efficient, along the rotational axis then gives a baryon loaded fireball of electron-positron pairs and radiation (about 1050^{50} erg total) whose beaming and relativistic interaction with circumstellar material makes the GRB (e.g., Rees & Meszaros 1992). The useful energy can be greatly increased if energy can be extracted from the rotational energy of the black hole by magnetic interaction with the disk. Such events should occur at a rate comparable to that of merging neutron stars and black hole neutron star pairs and may be responsible for long complex GRB's, but not short hard ones.Comment: 11 pages total, 2 Figures - altered and revised for ApJ letters, accepte

    Evidence for an Intense Neutrino Flux during rr-Process Nucleosynthesis?

    Get PDF
    We investigate the possibility that neutrino capture on heavy nuclei competes with beta decay in the environment where the rr-Process elements are synthesized. We find that such neutrino capture is not excluded by existing abundance determinations. We show that inclusion of significant neutrino capture on the (neutron number) N=82 waiting point nuclei can allow the inferred abundances of these species to provide a good fit to steady weak (beta decay plus neutrino capture) flow equilibrium. In fact, for particular choices of neutrino flux conditions, this fit is improved over the case where nuclei change their charge by beta decay alone. However, this improved fit can be realized only if neutrino capture plays a negligible role in nuclear decay back toward stability. We discuss the implications of these considerations for current proposed sites and models for rr-Process nucleosynthesis.Comment: 10 pages, plain tex, submitted to ApJ

    Low-energy neutrinos at off-axis from a standard beta-beam

    Get PDF
    We discuss a scenario to extract up to 150 MeV neutrinos at a standard beta-beam facility using one and two detectors off-axis. In particular we show that the high-energy component of the neutrino fluxes can be subtracted through a specific combination of the response of two off-axis detectors. A systematic analysis of the neutrino fluxes using different detector geometries is presented, as well as a comparison with the expected fluxes at a low-energy beta-beam facility. The presented option could offer an alternative way to perform low-energy neutrino experiments.Comment: 9 pages, 6 figure

    Opaque or transparent? A link between neutrino optical depths and the characteristic duration of short gamma-ray bursts

    Full text link
    Cosmological gamma ray bursts (GRBs) are thought to occur from violent hypercritical accretion onto stellar mass black holes, either following core collapse in massive stars or compact binary mergers. This dichotomy may be reflected in the two classes of bursts having different durations. Dynamical calculations of the evolution of these systems are essential if one is to establish characteristic, relevant timescales. We show here for the first time the result of dynamical simulations, lasting approximately one second, of post--merger accretion disks around black holes, using a realistic equation of state and considering neutrino emission processes. We find that the inclusion of neutrino optical depth effects produces important qualitative temporal and spatial transitions in the evolution and structure of the disk, which may directly reflect upon the duration and variability of short GRBs.Comment: Accepted for publication in ApJ Letter

    Can Naked Singularities Yield Gamma Ray Bursts?

    Get PDF
    Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\approx2\times 10^{16} ergs, where M_p is the Planck mass.Comment: 4 pages, TeX, no figure

    Magnetic Braking and Viscous Damping of Differential Rotation in Cylindrical Stars

    Full text link
    Differential rotation in stars generates toroidal magnetic fields whenever an initial seed poloidal field is present. The resulting magnetic stresses, along with viscosity, drive the star toward uniform rotation. This magnetic braking has important dynamical consequences in many astrophysical contexts. For example, merging binary neutron stars can form "hypermassive" remnants supported against collapse by differential rotation. The removal of this support by magnetic braking induces radial fluid motion, which can lead to delayed collapse of the remnant to a black hole. We explore the effects of magnetic braking and viscosity on the structure of a differentially rotating, compressible star, generalizing our earlier calculations for incompressible configurations. The star is idealized as a differentially rotating, infinite cylinder supported initially by a polytropic equation of state. The gas is assumed to be infinitely conducting and our calculations are performed in Newtonian gravitation. Though highly idealized, our model allows for the incorporation of magnetic fields, viscosity, compressibility, and shocks with minimal computational resources in a 1+1 dimensional Lagrangian MHD code. Our evolution calculations show that magnetic braking can lead to significant structural changes in a star, including quasistatic contraction of the core and ejection of matter in the outermost regions to form a wind or an ambient disk. These calculations serve as a prelude and a guide to more realistic MHD simulations in full 3+1 general relativity.Comment: 20 pages, 19 figures, 3 tables, AASTeX, accepted by Ap

    Collapse of Uniformly Rotating Stars to Black Holes and the Formation of Disks

    Full text link
    Simulations in general relativity show that the outcome of collapse of a marginally unstable, uniformly rotating star spinning at the mass-shedding limit depends critically on the equation of state. For a very stiff equation of state, which is likely to characterize a neutron star, essentially all of the mass and angular momentum of the progenitor are swallowed by the Kerr black hole formed during the collapse, leaving nearly no residual gas to form a disk. For a soft equation of state with an adiabatic index \Gamma - 4/3 << 1, which characterizes a very massive or supermassive star supported predominantly by thermal radiation pressure, as much as 10% of the mass of the progenitor avoids capture and goes into a disk about the central hole. We present a semi-analytic calculation that corroborates these numerical findings and shows how the final outcome of such a collapse may be determined from simple physical considerations. In particular, we employ a simple energy variational principle with an approximate, post-Newtonian energy functional to determine the structure of a uniformly rotating, polytropic star at the onset of collapse as a function of polytropic index n, where \Gamma = 1+1/n. We then use this data to calculate the mass and spin of the final black hole and ambient disk. We show that the fraction of the total mass that remains in the disk falls off sharply as 3-n (equivalently, \Gamma - 4/3) increases.Comment: 11 pages, 2 figures, 2 tables, AASTeX; accepted to appear in The Astrophysical Journa

    r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole - Neutron Star Mergers

    Get PDF
    We consider hot accretion disk outflows from black hole - neutron star mergers in the context of the nucleosynthesis they produce. We begin with a three dimensional numerical model of a black hole - neutron star merger and calculate the neutrino and antineutrino fluxes emitted from the resulting accretion disk. We then follow the element synthesis in material outflowing the disk along parameterized trajectories. We find that at least a weak r-process is produced, and in some cases a main r-process as well. The neutron-rich conditions required for this production of r-process nuclei stem directly from the interactions of the neutrinos emitted by the disk with the free neutrons and protons in the outflow.Comment: 10 pages, 4 figures, one table and additional references adde
    • 

    corecore