We examine the nucleosynthesis products that are produced in the outflow from
rapidly accreting disks. We find that the type of element synthesis varies
dramatically with the degree of neutrino trapping in the disk and therefore the
accretion rate of the disk. Disks with relatively high accretion rates such as
10 M_solar/s can produce very neutron rich nuclei that are found in the r
process. Disks with more moderate accretion rates can produce copious amounts
of Nickel as well as the light elements such as Lithium and Boron. Disks with
lower accretion rates such as 0.1 M_solar/s produce large amounts of Nickel as
well as some unusual nuclei such as Ti-49, Sc-45, Zn-64, and Mo-92. This wide
array of potential nucleosynthesis products is due to the varying influence of
electron neutrinos and antineutrinos emitted from the disk on the
neutron-to-proton ratio in the outflow. We use a parameterization for the
outflow and discuss our results in terms of entropy and outflow acceleration.Comment: 12 pages, 12 figures; submitted to Ap