1,710 research outputs found
Stable resonances and signal propagation in a chaotic network of coupled units
We apply the linear response theory developed in \cite{Ruelle} to analyze how
a periodic signal of weak amplitude, superimposed upon a chaotic background, is
transmitted in a network of non linearly interacting units. We numerically
compute the complex susceptibility and show the existence of specific poles
(stable resonances) corresponding to the response to perturbations transverse
to the attractor. Contrary to the poles of correlation functions they depend on
the pair emitting/receiving units. This dynamic differentiation, induced by non
linearities, exhibits the different ability that units have to transmit a
signal in this network.Comment: 10 pages, 3 figures, to appear in Phys. rev.
Phase transitions with four-spin interactions
Using an extended Lee-Yang theorem and GKS correlation inequalities, we
prove, for a class of ferromagnetic multi-spin interactions, that they will
have a phase transition(and spontaneous magnetization) if, and only if, the
external field (and the temperature is low enough). We also show the
absence of phase transitions for some nonferromagnetic interactions. The FKG
inequalities are shown to hold for a larger class of multi-spin interactions
Implications of an arithmetical symmetry of the commutant for modular invariants
We point out the existence of an arithmetical symmetry for the commutant of
the modular matrices S and T. This symmetry holds for all affine simple Lie
algebras at all levels and implies the equality of certain coefficients in any
modular invariant. Particularizing to SU(3)_k, we classify the modular
invariant partition functions when k+3 is an integer coprime with 6 and when it
is a power of either 2 or 3. Our results imply that no detailed knowledge of
the commutant is needed to undertake a classification of all modular
invariants.Comment: 17 pages, plain TeX, DIAS-STP-92-2
Topics in chaotic dynamics
Various kinematical quantities associated with the statistical properties of
dynamical systems are examined: statistics of the motion, dynamical bases and
Lyapunov exponents. Markov partitons for chaotic systems, without any attempt
at describing ``optimal results''. The Ruelle principle is illustrated via its
relation with the theory of gases. An example of an application predicts the
results of an experiment along the lines of Evans, Cohen, Morriss' work on
viscosity fluctuations. A sequence of mathematically oriented problems
discusses the details of the main abstract ergodic theorems guiding to a proof
of Oseledec's theorem for the Lyapunov exponents and products of random
matricesComment: Plain TeX; compile twice; 30 pages; 140K Keywords: chaos,
nonequilibrium ensembles, Markov partitions, Ruelle principle, Lyapunov
exponents, random matrices, gaussian thermostats, ergodic theory, billiards,
conductivity, gas.
Automorphisms of the affine SU(3) fusion rules
We classify the automorphisms of the (chiral) level-k affine SU(3) fusion
rules, for any value of k, by looking for all permutations that commute with
the modular matrices S and T. This can be done by using the arithmetic of the
cyclotomic extensions where the problem is naturally posed. When k is divisible
by 3, the automorphism group (Z_2) is generated by the charge conjugation C. If
k is not divisible by 3, the automorphism group (Z_2 x Z_2) is generated by C
and the Altsch\"uler--Lacki--Zaugg automorphism. Although the combinatorial
analysis can become more involved, the techniques used here for SU(3) can be
applied to other algebras.Comment: 21 pages, plain TeX, DIAS-STP-92-4
New Duality Relations for Classical Ground States
We derive new duality relations that link the energy of configurations
associated with a class of soft pair potentials to the corresponding energy of
the dual (Fourier-transformed) potential. We apply them by showing how
information about the classical ground states of short-ranged potentials can be
used to draw new conclusions about the nature of the ground states of
long-ranged potentials and vice versa. They also lead to bounds on the T=0
system energies in density intervals of phase coexistence, the identification
of a one-dimensional system that exhibits an infinite number of ``phase
transitions," and a conjecture regarding the ground states of purely repulsive
monotonic potentials.Comment: 11 pages, 2 figures. Slightly revised version that corrects typos.
This article will be appearing in Physical Review Letters in a slightly
shortened for
On the Thermodynamic Limit in Random Resistors Networks
We study a random resistors network model on a euclidean geometry \bt{Z}^d.
We formulate the model in terms of a variational principle and show that, under
appropriate boundary conditions, the thermodynamic limit of the dissipation per
unit volume is finite almost surely and in the mean. Moreover, we show that for
a particular thermodynamic limit the result is also independent of the boundary
conditions.Comment: 14 pages, LaTeX IOP journal preprint style file `ioplppt.sty',
revised version to appear in Journal of Physics
Transfer matrix for spanning trees, webs and colored forests
We use the transfer matrix formalism for dimers proposed by Lieb, and
generalize it to address the corresponding problem for arrow configurations (or
trees) associated to dimer configurations through Temperley's correspondence.
On a cylinder, the arrow configurations can be partitioned into sectors
according to the number of non-contractible loops they contain. We show how
Lieb's transfer matrix can be adapted in order to disentangle the various
sectors and to compute the corresponding partition functions. In order to
address the issue of Jordan cells, we introduce a new, extended transfer
matrix, which not only keeps track of the positions of the dimers, but also
propagates colors along the branches of the associated trees. We argue that
this new matrix contains Jordan cells.Comment: 29 pages, 7 figure
Note on nonequilibrium stationary states and entropy
In transformations between nonequilibrium stationary states, entropy might be
a not well defined concept. It might be analogous to the ``heat content'' in
transformations in equilibrium which is not well defined either, if they are
not isochoric ({\it i.e.} do involve mechanical work). Hence we conjecture that
un a nonequilbrium stationary state the entropy is just a quantity that can be
transferred or created, like heat in equilibrium, but has no physical meaning
as ``entropy content'' as a property of the system.Comment: 4 page
Correlation Inequalities for Quantum Spin Systems with Quenched Centered Disorder
It is shown that random quantum spin systems with centered disorder satisfy
correlation inequalities previously proved (arXiv:cond-mat/0612371) in the
classical case. Consequences include monotone approach of pressure and ground
state energy to the thermodynamic limit. Signs and bounds on the surface
pressures for different boundary conditions are also derived for finite range
potentials.Comment: 4 page
- …