We classify the automorphisms of the (chiral) level-k affine SU(3) fusion
rules, for any value of k, by looking for all permutations that commute with
the modular matrices S and T. This can be done by using the arithmetic of the
cyclotomic extensions where the problem is naturally posed. When k is divisible
by 3, the automorphism group (Z_2) is generated by the charge conjugation C. If
k is not divisible by 3, the automorphism group (Z_2 x Z_2) is generated by C
and the Altsch\"uler--Lacki--Zaugg automorphism. Although the combinatorial
analysis can become more involved, the techniques used here for SU(3) can be
applied to other algebras.Comment: 21 pages, plain TeX, DIAS-STP-92-4