70 research outputs found

    Acute Kidney Injury Following Chimeric Antigen Receptor T-Cell Therapy for B-Cell Lymphoma in a Kidney Transplant Recipient

    Get PDF
    Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is a newer and effective therapeutic option approved for patients with relapsed/refractory acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Acute kidney injury is a complication of CAR T-cell therapy that can result in kidney failure. In most cases, it is thought to be related to hemodynamic changes due to cytokine release syndrome. Kidney biopsy in this clinical scenario is usually not performed. We report on a kidney transplant recipient in his 40s who developed a posttransplant lymphoproliferative disorder of B-cell origin refractory to conventional treatments and received anti-CD19 CAR T-cell therapy as compassionate treatment. Beginning on day 12 after CAR T-cell infusion, in the absence of clinical symptoms, a progressive decline in estimated glomerular filtration rate of the kidney graft occurred. A subsequent allograft biopsy showed mild tubulointerstitial lymphocyte infiltrates, falling into a Banff borderline-changes category and resembling an acute immunoallergic tubulointerstitial nephritis. Neither CAR T cells nor lymphomatous B cells were detected within the graft cellular infiltrates, suggesting an indirect mechanism of kidney injury. Although kidney graft function partially recovered after steroid therapy, the posttransplant lymphoproliferative disorder progressed and the patient died 7 months later

    Antigen glycosylation regulates efficacy of CAR T cells targeting CD19

    Get PDF
    While chimeric antigen receptor (CAR) T cells targeting CD19 can cure a subset of patients with B cell malignancies, most patients treated will not achieve durable remission. Identification of the mechanisms leading to failure is essential to broadening the efficacy of this promising platform. Several studies have demonstrated that disruption of CD19 genes and transcripts can lead to disease relapse after initial response; however, few other tumor-intrinsic drivers of CAR T cell failure have been reported. Here we identify expression of the Golgi-resident intramembrane protease Signal peptide peptidase-like 3 (SPPL3) in malignant B cells as a potent regulator of resistance to CAR therapy. Loss of SPPL3 results in hyperglycosylation of CD19, an alteration that directly inhibits CAR T cell effector function and suppresses anti-tumor cytotoxicity. Alternatively, over-expression of SPPL3 drives loss of CD19 protein, also enabling resistance. In this pre-clinical model these findings identify post-translational modification of CD19 as a mechanism of antigen escape from CAR T cell therapy

    Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017, Naples, Italy)

    Get PDF
    Immunotherapy represents the third important wave in the history of the systemic treatment of cancer after chemotherapy and targeted therapy and is now established as a potent and effective treatment option across several cancer types. The clinical success of anti-cytotoxic T-lymphocyte-associated antigen (CTLA)-4, first, and anti-programmed death (PD)-1/PD-ligand (L)1 agents in melanoma and other cancers a few years later, has encouraged increasing focus on the development of other immunotherapies (e.g. monoclonal antibodies with other immune targets, adoptive cell transfer, and vaccines), with over 3000 immuno-oncology trials ongoing, involving hundreds of research institutes across the globe. The potential use of these different immunotherapeutic options in various combinations with one another and with other treatment modalities is an area of particular promise. The third Immunotherapy Bridge meeting (29-30 November, 2017, Naples, Italy) focused on recent advances in immunotherapy across various cancer types and is summarised in this report

    Catch me if you can: Leukemia Escape after CD19-Directed T Cell Immunotherapies

    Get PDF
    Immunotherapy is the revolution in cancer treatment of this last decade. Among multiple approaches able to harness the power of the immune system against cancer, T cell based immunotherapies represent one of the most successful examples. In particular, biotechnological engineering of protein structures, like the T cell receptor or the immunoglobulins, allowed the generation of synthetic peptides like chimeric antigen receptors and bispecific antibodies that are able to redirect non-tumor specific T cells to recognize and kill leukemic cells. The anti-CD19/CD3 bispecific antibody blinatumomab and anti-CD19 chimeric antigen receptor T cells (CART19) have produced deep responses in patients with relapsed and refractory B-cell acute leukemias. However, although the majority of these patients responds to anti-CD19 immunotherapy, a subset of them still relapses. Interestingly, a novel family of leukemia escape mechanisms has been described, all characterized by the apparent loss of CD19 on the surface of leukemic blasts. This extraordinary finding demonstrates the potent selective pressure of CART19/blinatumomab that drives extreme and specific escape strategies by leukemic blasts. Patients with CD19-negative relapsed leukemia have very poor prognosis and novel approaches to treat and ideally prevent antigen-loss are direly needed. In this review we discuss the incidence, mechanisms and therapeutic approaches for CD19-negative leukemia relapses occuring after CD19-directed T cell immunotherapies and present our future perspective

    Born to survive: how cancer cells resist CAR T cell therapy

    No full text
    International audienceAlthough chimeric antigen receptor T cells demonstrated remarkable efficacy in patients with chemo-resistant hematologic malignancies, a significant portion still resist or relapse. This immune evasion may be due to CAR T cells dysfunction, a hostile tumor microenvironment, or resistant cancer cells. Here, we review the intrinsic resistance mechanisms of cancer cells to CAR T cell therapy and potential strategies to circumvent them

    Overcoming Intrinsic Resistance of Cancer Cells to CAR T-Cell Killing

    No full text
    International audienceIn the past few years, chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for cancers that failed standard treatments. Such therapies have already been approved in several blood cancers, such as B-cell leukemia and lymphoma. Despite this progress, a significant proportion of patients experience primary or secondary resistance to CAR T-cell therapy. Here, we review the mechanisms by which CAR T cells eliminate their target and how cancer cells may be insensitive to such killing (here referred to as intrinsic resistance). Recent studies suggest that the activation of apoptosis through death receptor signaling is responsible for a major part of CAR T-cell cytotoxicity in vivo Indeed, cancer cells harboring aberrant apoptotic machinery may be insensitive to CAR T-cell killing. This intrinsic resistance of cancer cells to CAR T-cell killing could be responsible for a significant portion of treatment failure. Finally, we discuss strategies that may be envisioned to overcome such resistance to enhance CAR T-cell efficacy
    corecore