263 research outputs found

    On the frequency barrier of surface integral equations from a circuit point of view

    Get PDF
    Proceedings of the Progress In Electromagnetics Research Symposium, 2010, p. 46Session 1A4: Robust and E±cient Electromagnetic Solutions for Large-scale Problemspostprin

    Physics-based passivity-preserving parameterized model order reduction for PEEC circuit analysis

    Get PDF
    The decrease of integrated circuit feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods, and model order reduction (MOR) methods have proven to be very effective in combating such high complexity. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the circuit under study as a function of design parameters such as geometrical and substrate features. Traditional MOR techniques perform order reduction only with respect to frequency, and therefore the computation of a new electromagnetic model and the corresponding reduced model are needed each time a design parameter is modified, reducing the CPU efficiency. Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as geometrical layout or substrate characteristics. We propose a novel PMOR technique applicable to PEEC analysis which is based on a parameterization process of matrices generated by the PEEC method and the projection subspace generated by a passivity-preserving MOR method. The proposed PMOR technique guarantees overall stability and passivity of parameterized reduced order models over a user-defined range of design parameter values. Pertinent numerical examples validate the proposed PMOR approach

    Parameterized model order reduction of delayed systems using an interpolation approach with amplitude and frequency scaling coefficients

    Get PDF
    When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. We present an innovative PMOR technique for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, amplitude and frequency scaling coefficients and positive interpolation schemes. It is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach

    Distributive radiation characterization based on the PEEC Method

    Get PDF
    The Conference program's website is located at http://www.2014apsursi.org/Papers/ViewPapers.asp?PaperNum=1977Session: Electromagnetic Interaction and CouplingOral Presentation: paper no. 430.3Summary form only given. The intentional and unintentional radiations are of great importance to wireless power transfer at the low frequency regime and antenna signal transportation at the higher frequency regime. Due to the rising speed of digital systems and thereby broad bandwidth of signal channels at all levels of electronic devices, it becomes more essential than ever to quantitively analyze, model, and illustrate how the energy is leaked out and which part is a greater contributor to the wanted or unwanted radiation. However, conventional computational methods seem to be not sufficient to answer these questions. They mostly focused on characterizing port based properties such as matching condition and insertion losses, or gave general efficiency description and radiation patterns. But it is not clear how the energy is radiated and coupled from different parts of the radiator. For computational electromagnetics algorithms, they blended all physical phenomena together and made the radiation property extraction and analysis not straightforward. In this work, we extend the partial element equivalent circuit (PEEC) method to distributive radiation analysis so that the radiation and coupling contributions from each segment of the whole radiator can be singled out. Instead of focusing on the conventional circuit modeling method of PEEC, we focus on distributive radiated power and transferred power calculation. To fully stick to the first principle without sacrificing reliability, dynamic Green's function is used throughout the proposed method, not only for the coupling term, but also for the self term. A great significance of this work is that it can help to provide eligible lossy model of antenna structures and meta surfaces more accurately, which avoids approximations and curve fitting methods frequently used in RF and microwave engineering designs to make the circuit model more physical. For example, we can benchmark the idea through the coupling and radiation- mechanism of arbitrarily electrical radiators and magnetic radiators. The radiated power and coupled power between coupled structure will be systematically calculated and analyzed using the proposed method. It gives much more insights than the conventional radiation impedance concept. This work was supported in part by Hong Kong GRF 713011, GRF 712612, and NSFC 61271158.published_or_final_versio

    Interpolation-based parameterized model order reduction of delayed systems

    Get PDF
    Three-dimensional electromagnetic methods are fundamental tools for the analysis and design of high-speed systems. These methods often generate large systems of equations, and model order reduction (MOR) methods are used to reduce such a high complexity. When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. Design space optimization and exploration are usually performed during a typical design process that consequently requires repeated simulations for different design parameter values. Efficient performing of these design activities calls for parameterized model order reduction (PMOR) methods, which are able to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as layout or substrate features. We propose a novel PMOR method for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, a procedure to find scaling and frequency shifting coefficients and positive interpolation schemes. The proposed scaling and frequency shifting coefficients enhance and improve the modeling capability of standard positive interpolation schemes and allow accurate modeling of highly dynamic systems with a limited amount of initial univariate models in the design space. The proposed method is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach

    Distributive Radiation and Transfer Characterization Based on the PEEC Method

    Get PDF
    postprin

    Skin-Effect Loss Models for Time- and Frequency-Domain PEEC Solver

    Get PDF
    published_or_final_versio

    Multipoint model order reduction of delayed PEEC systems

    Get PDF
    We present a new model order reduction technique for electrically large systems with delay elements, which can be modeled by means of neutral delayed differential equations. An adaptive multipoint expansion and model order reduction of equivalent first order systems are combined in the new proposed method that preserves the neutral delayed differential formulation. An adaptive algorithm to select the expansion points is presented. The proposed model order reduction technique is validated by pertinent numerical results. A comparison with a previous model order reduction algorithm based on a single point expansion is performed to show the considerably improved modeling capability of the new proposed technique

    Reduced order modeling of delayed PEEC circuits

    Get PDF
    We propose a novel model order reduction technique that is able to accurately reduce electrically large systems with delay elements, which can be described by means of neutral delayed differential equations. It is based on an adaptive multipoint expansion and model order reduction of equivalent first order systems. The neutral delayed differential formulation is preserved in the reduced model. Pertinent numerical results validate the proposed model order reduction approach

    Mixed integral-differential skin-effect models for PEEC electromagnetic solver

    Get PDF
    Efficient modeling of the broadband skin-effect for conducting 3D shapes is a challenging issue for the solution of large electromagnetic problems. The inclusion of such models in an EM solver can be very costly in compute time and memory requirements. Several properties of a model are desirable for the solution of practical problems such as the broadband frequency domain or the time domain applicability. In this paper, we present a model which meets some of these challenges and which is suitable for the PEEC solution method. © 2011 IEEE.published_or_final_versionThe IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS 2011), San Jose, CA., 23-26 October 2011. In Proceedings of IEEE 20th EPEPS, 2011, p. 177-18
    corecore