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Distributive Radiation and Transfer Characterization
Based on the PEEC Method

Ying S. Cao, Student Member, IEEE, Li Jun Jiang, Senior Member, IEEE, and Albert E. Ruehli, Life Fellow, IEEE

Abstract—Power radiation and radiated coupling among differ-
ent structures represent an important area for research study. The
partial element equivalent circuit method (PEEC) is a powerful
technique which bridges the gap between the electromagnetic and
circuit theories. In this paper, we develop a new approach for PEEC
to calculate the distributive power radiation and couplings. With
this approach, formulations for both the radiated power and the
transferred power can be evaluated. Further, the physical mean-
ings of the power results are interpreted according to the conser-
vation of energy law. We use electric dipoles, magnetic dipoles and
patch antennas as well as coupled microstrip lines to benchmark
the method. The approach can also be applied to EMC/EMI and
other power dissipation computations.

Index Terms—Energy conservation, partial element equivalent
circuit method (PEEC), radiated power, transferred power.

I. INTRODUCTION

THE rising speed and numbers of electronic devices made
today as well as the use of new artificial materials [1]

make EMC/electromagnetic interference (EMI) issues of ever
increasing importance. With the increasing density of devices
and bandwidth of the signal channel, the complexity of ICs and
related interconnects are becoming bottlenecks for many high
performance systems. Electronic design automation software
is indispensable for successful designs. However, modeling of
high speed signals in a complex environment is not a trivial task.
To make a tradeoff between speed and accuracy, many empirical
or theoretical approximations have to be used at different stages
of designs.

With the improvement of devices, computational methods
and commercial softwares also have to be improved. Various
approaches such as the method of moments [4], finite element
method [3], and finite difference methods [2] are developed
based on numerical methods. For example, full-wave solvers
have been developed by using the augmented electric field inte-
gral equation (EFIE) [5] aiming at a better solution of the low
frequency regime. These computational methods or softwares
focus on characterizing ports, such as the matching conditions
or insertion loss. Results are efficiency, radiation patterns and
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also current distributions, etc. However, these approaches blend
together internal physical phenomena. Issues like radiation and
coupling between different components are not transparent to
users in these methods.

The partial element equivalent circuit (PEEC) method, which
was proposed in the 1970s [6]–[9], is based on the EFIE with
potentials and currents as unknowns suitable for circuit models
for electromagnetic problems. The approach turns the field into
a circuit problem. A large category of PEEC applications are for
static or quasi-static problems. Under these conditions, partial
elements in PEEC are real if the retardation is approximated or
ignored. This obviously is not suitable for higher frequencies.
For high frequency full-wave solutions, the partial elements
should include full dynamic Green’s functions to represent ra-
diation effects. Hence, we employ the full-wave PEEC method
in this study for power radiation and energy transfer problems.

In [10], [11], an approach has been proposed to use the PEEC
method to decompose the radiation part and evaluate the dis-
tributive contributions for different structures. The approach
includes retardation and extracts all real power results from a
phasor power representation. The radiation and power transfer
are separated by using partial elements. It clearly determines the
power composition of radiators. However, the representations of
power transfer and radiation in [10] have some issues. Another
recent study [13] which evaluates the radiated power for PCB
is based on the port network parameters. The radiated power is
calculated using incident port voltages and S-parameters.

In our approach, the geometrical current distributions and
the electric field are found. In [14], a new radiation calculation
method was proposed using the retardation and the reorganiza-
tion of the partial components. It predicts the Hertzian dipole
very well. However, it is difficult to be used for general large
structures. In our study, we extend the PEEC method to distribu-
tive radiation and power transfer analysis such that details like
the radiation and contributions to couplings from each segment
of the radiator can be singled out. The differences between this
study and [10] is that we not only derive the power formulations
in terms of self- and mutual terms according to the energy con-
servation law, but also provide a clear physical interpretation of
both the radiated and transferred power results. We analyze the
coupling between radiated objects as well as the coupling and
radiation of different parts for the same radiator. This study can
be applied to EMI optimization, noise coupling reduction, and
other IC and PCB applications.

The paper is organized as follows: Section II will give a brief
introduction on the old and new power radiation and transfer
formulations; Section III demonstrates the radiated and trans-
ferred power based on the energy conservation law; Section
IV investigates several benchmarks to verify the proposed idea.
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Fig. 1. Power into two cells and their equivalent PEEC model. Pin is the total
input power into the two cells, in which a sinusoidal source is applied.

Conclusions and discussions are presented at the end of this
paper.

II. THEORETICAL BACKGROUND

Fig. 1 depicts a representative PEEC circuit model for cell k
and cell m in the MLA form as is the case in [10]. There are
controlled voltage sources on inductive-coupled branches. They
are

V L
k(m ) = jωLpkm IL

m e−jK dk m (1a)

V L
m (k) = jωLpkm IL

k e−jK dk m (1b)

where dkm is the center-to-center distance between two induc-
tive cells k and m. Lpkm is the partial mutual inductance be-
tween cell k and m, and is a pure real value here. K here is the
wave number.

For two capacitive branches k and m the controlled voltage
sources are

V C
k(m ) =

Ppkm

jω
IC
m e−jK dk m (2a)

V C
m (k) =

Ppkm

jω
IC
k e−jK dk m (2b)

where dkm is the central distance between two capacitive cells
k and m. IC

m and IC
k are currents through the mth and kth

capacitive branch, respectively. Ppkm is the partial coefficient
of potential between cell k and m, which is a real number in
this formulation. Details of the formulation are given in [10].
We note that the midfrequency approximation of the retardation
does not include the contribution of the self-terms to the radia-
tion. We also note that the self-term corresponds to a Hertzian
dipole [14]. It accurately presents the retardation.

This issue is solved here by accurately using the full wave
Green’s function in the integration kernel. This results in com-
plex partial inductances and partial coefficients of potential. Let
Lpkm represent the complex inductance, and Ppki represent the
complex coefficient of potential. The branch currents Im and Ik

are also complex currents in circuit m and k. Then

Lpkm =
μ

4πakam

∫

ak

∫

a ′
m

∫

lk

∫

l ′m

e−jK |r−r ′|

|r − r′| dakda′
m dlkdl′m

(3a)

Ppki =
1

4πSiSkε

∫

Sk

∫

S ′
i

e−jK |r−r ′|

|r − r′| dSkdS ′
i (3b)

where again K is the wave number. Then (1) can be rewritten
as

V L
k(m ) = jωLpkm IL

m (4a)

V L
m (k) = jωLpkm IL

k . (4b)

Of course, the self-terms are obtained if we set k = m
in aforementioned equations to get the complex partial self-
inductances and partial self-coefficients of potential.

After mathematical manipulations, the transferred and radi-
ated power can be represented by partial elements and current
distributions on meshes, which are

PL,r
m (k) =

1
2
Re(IL

k IL∗
m ) · Re(jωLpkm ) (5a)

PL,t
m (k) = − 1

2
Im(IL

k IL∗
m ) · Im(jωLpkm ) (5b)

PC,r
m (k) =

1
2
Re(IC

k IC ∗
m ) · Re

(
Ppkm

jω

)
(5c)

PC,t
m (k) = − 1

2
Im(IC

k IC ∗
m ) · Im

(
Ppkm

jω

)
(5d)

where PL,r
m (k) and PL,t

m (k) are the inductive coupled radiated and
transferred power for cell m by coupling with k, respectively.
PC,r

m (k) and PC,t
m (k) are the capacitive radiated and transferred

power for cell m by coupling with k, respectively. And the
total radiated and transferred power is the sum of both inductive
and capacitive effects. Further details can be referred to [12].
Therefore

Pr
m (k) = PL,r

m (k) + PC,r
m (k) (6a)

P t
m (k) = PL,t

m (k) + PC,t
m (k) . (6b)

III. ENERGY CONSERVATION

A. Radiated Power Analysis

1) Two Cells: For the case with only two PEEC loops as
shown in Fig. 1, the total power for loops k and m is

Pin =
1
2
Re((Rk + jωLpkk )IL2

k + (Rm + jωLpmm)IL2
m

+V L
k(m )I

L∗
k + V L

m (k)I
L∗
m )

+
1
2
Re

(Ppkk

jω
IC 2
k +

Ppk+1,k+1

jω
IC 2
k+1

+
Ppmm

jω
IC 2
m +

Ppm+1,m+1

jω
IC 2
m+1

)
(7)

+
1
2
Re(

∑
j �=k

V C
k(j )I

C ∗
k +

∑
j �=k+1

V C
k+1(j )I

C ∗
k+1

+
∑
j �=m

V C
m (j )I

C ∗
m +

∑
j �=m+1

V C
m+1(j )I

C ∗
m+1).
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Fig. 2. Geometry of two general coupled structures.

From the equation, the input power can be separated into three
parts:

1) Ohmic power 1
2 (RkIL2

k + Rm IL2
m ).

2) Self-radiated power, marked as Pr ′

k(k) and Pr ′

m (m ) to dis-
tinguish them from the power defined in (5).

Pr ′

k(k) =
1
2
Re(jwLpkkIL2

k

+
Ppkk

jω
IC 2
k +

Ppk+1,k+1

jω
IC 2
k+1

+V C
k(k+1)I

C ∗
k + V C

k+1(k)I
C ∗
k+1) (8a)

Pr ′

m (m ) =
1
2
Re(jwLpmmIL2

m

+
Ppmm

jω
IC 2
m +

Ppm+1,m+1

jω
IC 2
m+1

+V C
m (m+1)I

C ∗
m + V C

m+1(m )I
C ∗
m+1). (8b)

The self-radiated power has two parts: inductive self-
radiation and capacitive self-radiation.

3) The radiated power due to mutual coupling also has two
parts Pr ′

m (k) and Pr ′

k(m ) , to distinguish from the power
defined in (5), and they are

Pr ′

m (k) =
1
2
Re(V L

k(m )I
L∗
m +

∑
j /∈cell m

V C
m (j )I

C ∗
m

+
∑

j /∈cell m

V C
m+1(j )I

C ∗
m+1) (9a)

Pr ′

k(m ) =
1
2
Re(V L

k(m )I
L∗
k +

∑
j /∈cell k

V C
k(j )I

C ∗
k

+
∑

j /∈cell k

V C
k+1(j )I

C ∗
k+1). (9b)

The radiated power due to mutual couplings also has two
parts: the mutual inductive power and mutual capacitive power.

2) General Structure Case: For the case where we have two
coupled arbitrary structures, each structure is discretized into
small mesh cells using the PEEC scheme. We can get the current
distribution on each cell by solving the lumped circuit model. In
Fig. 2, the radiated power can be simplified in a vector–matrix–
vector product form.

Pr ′

a(a) =
1
2
Re(IL

a
†
R

aa
L IL

a + IC
a
†
R

aa
C IC

a ) (10a)

Fig. 3. Geometry of two arbitrary coupled cells.

Pr ′

b(b) =
1
2
Re(IL

b
†
R

bb
L IL

b + IC
b
†
R

bb
C IC

b ) (10b)

Pr ′

a(b) =
1
2
Re(IL

a
†
R

ab
L IL

b + IC
a
†
R

ab
C IC

b ) (10c)

Pr ′

b(a) =
1
2
Re(IL

b
†
R

ab
L IL

a + IC
b
†
R

ab
C IC

a ) (10d)

in which the superscript ‘†’ means the conjugate transpose of a
vector. IL

a and IL
b are vectors of current distribution of inductive

branches on a and on b, respectively. IC
a and IC

b are current
distribution vectors for capacitive branches on a and b, respec-

tively; R
ab
L is an NLa

× NLb
matrix in which all elements are

inductive coupling impedances (NLa
and NLb

are the number of

inductive cells on a and b, separately. R
ab
L(mk) = jωLpmk ), and

the R
ab
C is an NCa

× NCb
matrix whose elements correspond

to capacitive coupling (NCa
and NCb

are number of capacitive

cells on a and b, respectively. R
ab
C (mk) = P pm k

jω ).
For the traditional power analysis, the radiated power based

on mutual coupling is not transparent from the formulation.
In this study, the power for mutual couplings is obtained and
its physical significance is also figured out. It shows how each
part of the structure contributes to the total radiation. In (10),
Pr ′

a(b) can be positive or negative. If it is positive, it means
coupled radiated power of a due to coupling with b enhances
the total radiation of the structure. If it is negative, it means the
coupled-radiated power of a by coupling with b decreases the
total radiation of the system. This provides a unique analysis for
both radiation optimization and noise reduction.

B. Analysis of Transferred Power

With the proposed radiated power definition, we can carefully
derive the representation of the transferred power. Similar to the
radiated power, we will have mutually transferred power as
well as self-transferred power. But here we care more about the
mutually transferred power since it represents how much power
is transferred from one part to another.

In Fig. 3, only cell k receives injected power Pin . The power
consumption on m contains ohmic power and radiated power,
which are Pr ′

mm and P ohm
m . According to energy conservation,

energy can be neither created nor destroyed. It can only be
converted from one form to another. Since m is passive, there
is no source on it, all of its power comes from k. This is called
the transferred power from k to m, i.e., P t ′

m (k) . The transferred
power from k to m shall be equal to power consumption on m.
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Hence, we have

P t ′

m (k) = Pr ′

m (m ) + P ohm
m . (11)

The remaining question is the computation of P t ′

m (k) . The right
hand side of (7) can be separated into three parts. The radiated
power based on the mutual coupling can be moved to the left
hand side of the equation. Hence, the equation can be rewritten
as

Pin − 1
2
Re

( ∑
i /∈cell k

V L
k(i)I

L∗
m

+
∑

j /∈cell k

V C
k(j )I

C ∗
k +

∑
j /∈cell k

V C
k+1(j )I

C ∗
k+1

+
∑

i /∈cell m

V L
m (i)I

L∗
m (12)

+
∑

j /∈cell m

V C
m (j )I

C ∗
m +

∑
j /∈cell m

V C
m+1(j )I

C ∗
m+1)

= Pohm
k + P ohm

m + Pr ′

k(k) + Pr ′

m (m ) .

By comparing (12) with (11), we can safely come to the con-
clusion that

P t ′

m (k) = −1
2
Re(

∑
i /∈cell m

V L
m (i)I

L∗
m +

∑
j /∈cell m

V C
m (j )I

C ∗
m

+
∑

j /∈cell m

V C
m+1(j )I

C ∗
m+1). (13)

Below we will provide several examples to benchmark this equa-
tion. If the transferred power P t ′

m (k) calculated by (13) is the

same to Pr ′

m (m ) + P ohm
m calculated by (10), then we can say that

the formulation of transferred power is correct.

C. Physical Interpretation of Power Transfer and Radiation

As shown in (3) the partial elements (partial inductances and
partial coeffcients of potential) are represented by the Green’s
function. For low frequencies or conductors which are physi-
cally close, the Green’s function can be expanded in a Taylor
series. According to (3), the partial elements are complex.

The different parts of the series expansion of the partial ele-
ments make different contributions to the power transfer as well
as to the radiation.

e−jK R

R
=

1
R

∞∑
n=0

(−jKR)n

n!
=

1
R

(1 + (−jKR)

+
(−jKR)2

2!
+

(−jKR)3

3!
+ ...). (14)

1) Inductive Branch: The inductive impedance is obtained
if we multiply (14) by jω. The first term in (14), which is 1

R , cor-
responds to an inductor. The second term −jK R

R , corresponds

to a positive resistor. Further, the fourth term (−jK R)3

3!·R actually
corresponds to a negative resistor. The combination of the posi-
tive resistor and the negative resistor results in a physical resistor

with a positive value. The third term (−jK R)2

2!·R corresponds to a

Fig. 4. Physical process on inductive branch. During this process, a numerical
complex inductor is turned into a series of a physical inductor LL , a positive-
valued resistor RL and a capacitor CL , among which only RL contributes to
radiation.

capacitor. These four elements are obtained from the first four
terms of the Taylor series. We assume that the maximum fre-
quency is low enough or that the distance between the elements
is small enough that such that KR � 1. The equivalent circuit
for the partial inductance is shown in Fig. 4.

After certain mathematical manipulations, LL , RL and CL

can be represented as follows:

LL ∝
∑

n

(KR)n

R · n!
, n = 0, 4, 8... (15a)

RL ∝
∑

n

(−1)
n −1

2 · ω · (KR)n

R · n!
, n = 1, 3, 5... (15b)

CL ∝
∑

n

Rn!
Kn+2Rnc2 , n = 2, 6, 10... (15c)

in which ω is the angular frequency, K is wave number and c
is the velocity of light in air. For an accurate Taylor series ex-
pansion it is required that KR � 1. Considering (15), we can
see that LL will increase for higher frequencies and CL will
decrease. For RL , it has positive and negative parts according
to (15b). Since KR � 1, the first term of RL dominates. More-
over, RL is always positive, and it can be proved that RL is
the only part in these three components which contributes to
radiation. And the radiated power by RL is always positive.

2) Capacitive Branch: Similarly, on the capacitive branch, if
(14) is divided by jω, the capacitive impedance will be obtained,
as shown in Fig. 5.

CC ∝
∑

n

(KR)n

R · n!
, n = 0, 4, 8... (16a)

RC ∝
∑

n

(−1)
n + 1

2 · (KR)n

ωR · n!
, n = 1, 3, 5... (16b)

LC ∝
∑

n

Kn−2Rn

n!Rc2 , n = 2, 6, 10... (16c)

in which ω is the angular frequency, K is wave number and
c is the velocity of light in air. According to requirements for
Taylor expansion, KR � 1. Looking back to (16), we can see
that CC will become larger when frequency goes higher. The

https://www.researchgate.net/publication/224256643_Generalized_Partial_Element_Equivalent_Circuit_PEEC_Modeling_With_Radiation_Effect?el=1_x_8&enrichId=rgreq-f464344d25c587f90b321d61b6d5568c-XXX&enrichSource=Y292ZXJQYWdlOzI3MzEzNjk2NztBUzoyMDM5Mzk4MjQ4MzY2MTBAMTQyNTYzNDQ1MTQ5NQ==
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Fig. 5. Physical process on capacitive branch. During this process, a numerical
complex capacitor is turned into a series of a physical capacitor CC , a resistor
RC and an inductor LC , among which only RC contributes to radiation.

first term of LC is only proportional to r, and does not depend
on frequency. The following terms of LC will increase when
frequency goes higher. For RC , it has positive and negative
parts according to (16 b), and the sum of these terms is negative.
Since KR � 1, the first term of RC dominates. Moreover, RC

is always negative, and it can be proved that RC is the only part
in these three components which contributes to the radiation.
And the radiated power by RL is always negative.

To sum up the radiation process from both inductive and
capacitive effects, only RL and RC contribute to it. This is
because power on these resistors are nearly pure real. LL , LC

part and CL , CC part correspond to stored magnetic power
and electric power, respectively, and power for the inductors
and capacitors are almost pure imaginary. This agrees with the
Poynting theorem (PT), which states that the real part of power
corresponds to radiation loss and ohmic loss, and imaginary part
is for the stored power (magnetic power and electric power).

For the transferred power, RL , RC , LL , LC , CL and CC part
all have contributions. They can enhance or decrease the power
transfer process due to different frequencies or positions.

IV. NUMERICAL VERIFICATION

A. Benchmark Procedure

In order to validate the proposed formulations for the ra-
diated and transferred power, we use two coupled structures
represented by a and b. Here, a is excited with a source while b
has a passive load.

We will do the experiments in three steps:
1) Verify the self-radiated power. We use (10a) or (10b) to

calculate radiated and ohmic power of a and b, respec-
tively. This is compared with power results using the PT
or softwares such as ADS, HFSS, etc.

2) Verify the transferred power. Also, we calculate P t ′

b(a)
by (13) and compare it with the summation of radiated
power and ohmic power in stage (a). If P t ′

b(a) = Pr ′

b(b) +
P ohm

b , the formulation of transferred power is proven to
be correct.

3) Verify the radiated power due to mutual couplings.
Traditional method does not lead to the determination of the

mutual-radiated power. We need to compare the total-radiated
power of the system Pr ′

calculated by (10a) or (10b), with the

Fig. 6. Geometry of two coupled dipoles.

Fig. 7. Radiated power of two dipoles calculated by (10) compared with the
PT. P r ′

is the total-radiated power of the system. P r ′
a (a ) and P r ′

b (b ) are self-
radiated power by “a” and “b,” respectively.

sum of the self- and mutual-radiated power of the radiators in
the system, say Pr ′

a(a) , P
r ′

b(b) calculated by (10a) and (10b), Pr ′

b(a)

and Pr ′

a(b) which are calculated by (10c) and (10d). According to

stage (a), self-radiated power can be verified by the PT. If Pr ′
=

Pr ′

a(a) + Pr ′

b(b) + Pr ′

a(b) + Pr ′

b(a) , we conclude that formulations
of mutual-radiated power are also correct.

B. Two Dipoles

Two lossless, zero-thickness dipoles are both 2 m long and
1 cm wide which are placed to be parallel to each other. The
center to center distance between them is 1 m. The receiver is
loaded with a 100-Ω resistor while the transmitter is excited by a
lumped sinusoidal voltage source with the amplitude VS = 100
V. The geometry is illustrated in Fig. 6. From Fig. 7, we can
see that self-radiated power from (10) matches very well with
what we get from the PT. And the radiated power results reach
maximum at around 75 and 225 MHz which are the resonant
frequencies of the dipoles. Fig. 8 illustrates that transferred
power matches very well with power consumption on b, which
means that the transferred power formulation derived from the
energy conservation law is correct. And the transferred power
results reach maximum at around 75 and 225 MHz which are the
resonant frequencies of the dipoles. Fig. 9 illustrates that total-
radiated power is equal to the sum of the self-radiated power
of a and b, and mutual-radiated power between coupled parts.
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Fig. 8. Transferred power of coupled dipoles calculated by (13). P t ′
b (a ) is the

transferred power from a to b.

Fig. 9. Total-radiated power of two dipoles calculated by (10) compared with
the summation of self- and mutual-radiated power between coupled parts.

We observe that the mutual power formulation is correct. And
the radiated power results reach maximum at around 75 and 225
MHz.

C. Two Square Loops

The second example is a pair of two identical square loops
parallel to each other. The length of each loop is 1 m and the
width is 0.01 m. The vertical distance between two loops is 0.1
m. Loop a has a 100-V sinusoidal voltage source in the middle of
one side. Loop b is loaded with a 50-Ω resistor. The self-radiated
power is checked first. From Fig. 10, we can see that self-
radiated power from (10) matches well with the result obtained
with the PT. The radiated power results reach maximum at 75
and 150 MHz which are the resonant frequencies of the loops.
Fig. 11 illustrates that transferred power matches very well with
power consumption on b, which means that the transferred power
formulation derived from the energy conservation law is correct.
And the transferred power results reach a maximum at 75 and
150 MHz which are the resonant frequencies of the loops. Fig. 12
illustrates that total-radiated power is equal to the sum of the
self- and mutual-radiated power between coupled parts, which
means that the mutual power formulation is correct. Finally, the
radiated power results reach maximum at 75 and 150 MHz.

Fig. 10. Radiated power of two coupled loops calculated by (10) compared
with the PT. P r ′

is the total-radiated power of the system. P r ′
a (a ) and P r ′

b (b ) are

self-radiated power by a and b, respectively.

Fig. 11. Transferred power of coupled loops calculated by (13). P t ′
b (a ) is the

transferred power from a to b.

Fig. 12. Total-radiated power of two coupled loops calculated by (10) com-
pared with the summation of self- and mutual-radiated power between coupled
parts.

D. Patch Antenna

The third example is an air-filled patch antenna with its geom-
etry depicted in Fig. 13. The patch is 1 mm above an infinitely
large ground plane. The antenna has a line feed with a length
of 7.5 mm and width of 1.6 mm attached to a 100-V sinusoidal
voltage source with a series resistance of 50 Ω. At a frequency
of 10 GHz, S11 reaches −25 dB.
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Fig. 13. Geometry of the patch.

Fig. 14. Current through voltage source of the patch antenna calculated by
PEEC compared with ADS results.

Fig. 15. Radiated power of the patch antenna calculated by PEEC compared
with ADS results.

From Fig. 14, we observe that in the frequency range from 8
to 12 GHz, current flows through the voltage source matching
well with ADS results.

Fig. 15 depicts that the radiated power changes with frequency
and reaches maximum value at around 10 GHz. The results from
(10) matches very well with ADS results.

In order to verify whether this system obeys the energy con-
servation law, we compare the radiated power with input power
from the source in Fig. 16. Since the input power from the source
is used in the patch for radiation, the two results should be equal
to each other as is the case.

Fig. 16. Radiated power of the patch antenna calculated by PEEC compared
with input power.

Fig. 17. Geometry of two coupled lines.

E. Two Coupled Lines

In this section, we discuss the power analysis on the PCB
(see Fig. 17). The length of two coupled lines is 5 cm, the width
of the lines is 1 mm wide with a separation of 0.06 mm. The
coupled lines are air filled and are 0.1 mm above an infinitely
large ground plane. The excitation is again a 100-V sinusoidal
voltage source.

1) Lower Frequency Case: All four termination resistors are
all 50 Ω. The frequency range is from 1 to 4 GHz.

Fig. 18 shows the real and imaginary part of currents flow
through four resistors in the four ends of coupled lines by PEEC
and by ADS, respectively. And the currents match very well for
these frequencies.

Fig. 19 depicts total-radiated power together with transferred
power from a to b. It is shown that for this frequency range, the
radiated power is very small compared with transferred power.
The transferred power from a to b, P t ′

a(b) dominates in the total
power analysis. Therefore, radiation can be neglected.

2) Higher Frequency Case: For very high frequencies, the
radiated power is larger and cannot be neglectable. Four resistors
are all 50 Ω. Frequency ranges from 10 to 14 GHz. Fig. 20
depicts real and imaginary part of currents flow through four
resistors in the four ends of coupled lines by PEEC and by
ADS, separately. The currents match well at relatively high
frequencies with slight differences. The difference from ADS is
due to the lack of a full-wave capability in the ADS solution.
Fig. 21 depicts total-radiated power together with transferred
power from a to b. We can see clearly that at this frequency range,
radiated power is even larger than transferred power at certain
frequency points. Therefore, radiation cannot be neglected.
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Fig. 18. (a) Real part of currents of coupled microstrip lines by PEEC in
comparison with ADS results. (b) Imaginary part of currents coupled microstrip
lines by PEEC in comparison with ADS results.

Fig. 19. Power analysis of coupled lines at lower frequency regime. Pr ′ is
total-radiated power of the system calculated from (10), and P t ′

b (a ) is transferred

power from a to b evaluated in (13).

V. CONCLUSION

In this paper, a novel method for calculating and analyzing
distributive radiation as well as the transfer characterization
is proposed. The approach is based on the PEEC method and
the energy conservation law. The approach allows the detailed
characterization of the contribution of each circuit element to the
transferred power and also the radiation. Examples are given for

Fig. 20. (a) Real part of currents of coupled microstrip lines by PEEC in
comparison with ADS results. (b) Imaginary part of currents coupled microstrip
lines by PEEC in comparison with ADS results.

Fig. 21. Power analysis of coupled lines at lower frequency regime. Pr ′ is
total-radiated power of the system calculated from (10), and P t ′

b (a ) is transferred

power from a to b by (13).

electric dipoles, magnetic dipoles, patch antennas and coupled
microstrip lines. Further, the physical meanings of the power
results are given. By properly utilizing the theory and the power
distribution results, we are able to also give general guidelines.
Examples are the wireless power transfer and the antenna design
and optimization.
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