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Abstract—We present a new model order reduction technique
for electrically large systems with delay elements, which can
be modeled by means of neutral delayed differential equations.
An adaptive multipoint expansion and model order reduction
of equivalent first order systems are combined in the new
proposed method that preserves the neutral delayed differential
formulation. An adaptive algorithm to select the expansion points
is presented. The proposed model order reduction technique is
validated by pertinent numerical results. A comparison with a
previous model order reduction algorithm based on a single
point expansion is performed to show the considerably improved
modeling capability of the new proposed technique.

Index Terms—Delayed Partial Element Equivalent Circuit
method, model order reduction, neutral delayed differential
equations.

I. I NTRODUCTION

Nowadays, the accurate modeling of modern integrated
circuits and high-speed systems calls for electromagnetic (EM)
3-D methods [1], [2] as necessary analysis and design tools.
These EM methods can produce large systems of equations
and model order reduction (MOR) techniques are used to
reduce the complexity of EM models and the computa-
tional cost of the simulations, while retaining the important
physical features of the original system [3], [4]. Among all
EM methods, the Partial Element Equivalent Circuit (PEEC)
method [2] uses a circuit interpretation of the Electric Field
Integral Equation (EFIE) [5], therefore it is able to handle
problems with both electromagnetic fields and circuits [2],
[6]. Considering a quasi-static PEEC formulation [2], the
time delays between the elements in the full-wave PEEC
formulation [7] are neglected and an equivalent RLC circuit
and systems of ordinary differential equations (ODE) are
obtained. Standard MOR techniques for ODE systems can be
used to reduce the size of a quasi-static PEEC model [3], [4].
When geometric dimensions become electrically large and the
frequency content of signal waveform increases, time delays

must be taken into account and, therefore, included in the
modeling process.

A PEEC formulation which include delay elements, called
τPEEC [8], becomes necessary and leads to systems of neutral
delayed differential equations (NDDE) [7]. Over the years,
several successful MOR methods for large ODE systems have
been proposed. Since standard MOR techniques for ODE
systems cannot be directly applied to NDDE systems, the
reduction of large NDDE systems is still a very challenging
research topic. Especially, the reduction of electrically large
structures where delays among coupled elements cannot be
neglected or easily approximated by rational basis functions
needs to be investigated and addressed.

Some techniques for the reduction of NDDE systems have
been proposed [9]–[12]. In [9] an equivalent first order system
is computed by means of a Taylor expansion, and then
MOR Krylov subspace methods [3], [4] are applied. This
MOR technique does not preserve the NDDE formulation.
The construction of rational local approximations ofτPEEC
systems and multiple expansion points are used in [10]. Then,
each rational local approximation is reduced by standard MOR
methods and portions of these reduced rational models are
combined to obtain a global reduced model for the frequency
range of interest. As in [9], the NDDE formulation is not
preserved in the reduction process. In [11], some exponential
terms (primary phase factors) are extracted and the smoother
remainders are expanded into a linear form and then projected
to obtain the reduced model. Hence, the extraction of primary
phase factors and the segregation of the system into multiple
remainder phase matrices are needed. In [12], an equivalent
first order system is computed by means of a single point Tay-
lor expansion [9] and a corresponding orthogonal projection
matrix is computed by means of a block Arnoldi algorithm [3].
Then, an orthogonal projection matrix for the original NDDE
system is extracted and a reduced NDDE system is obtained.
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This paper presents a new MOR method forτPEEC models
that is able to accurately reduce electrically large structures
with delay elements that cannot be neglected or easily ap-
proximated by rational basis functions. An adaptive multipoint
expansion and MOR of equivalent first order systems [12]
are combined in the new proposed technique. The NDDE
formulation is preserved in the reduced model.

The paper is organized as follows. Section II describes
the modified nodal analysis (MNA) equations of theτPEEC
method. Section III describes the proposed MOR method
for NDDE systems. Section IV presents numerical results
based on theτPEEC method to validate the proposed MOR
technique. A comparison with the model order reduction
algorithm based on a single point expansion [12] is performed
to show the considerably improved modeling capability of the
new proposed technique.

II. τPEEC FORMULATION

The PEEC method [2] stems from the integral equation
form of Maxwell’s equations and it is able to provide a circuit
interpretation of the EFIE equation, thus allowing to handle
complex problems involving both circuits and electromagnetic
fields.

In the standard approach, volumes and surfaces are dis-
cretized into elementary regions, hexahedra and patches re-
spectively [8] over which the current and charge densities are
expanded into a series of basis functions.

Nodes and branches are generated and electrical lumped
elements are identified modeling both the magnetic and elec-
tric field coupling by means of the standard Galerkin’s testing
procedure.

Conductors are modeled by their ohmic resistance, while
dielectrics require modeling the polarization charge due to the
dielectric polarization [13]. Partial inductances and coefficients
of potential model magnetic and electric field coupling, re-
spectively. The magnetic field coupling between two inductive
volume cellsα andβ is modeled by the partial inductance

Lpαβ =
µ

4π

1
aαaβ

∫

uα

∫

uβ

1
Rαβ

duαduβ (1)

whereRαβ is the distance between any two points in volumes
uα and uβ with aα and aβ their cross sections. The electric
field coupling between two capacitive surface cellsγ andδ is
modeled by the coefficient of potential

Pγδ =
1

4πε

1
SγSδ

∫

Sγ

∫

Sδ

1
Rγδ

dSγdSδ (2)

whereRγδ is the distance between any two points on surfaces
γ and δ, while Sγ andSδ denote the area of their respective
surfaces.

Due to the finite value of the speed of light, partial induc-
tances and coefficients of potentials relate causes and effects
delayed in time:

vL,α (t) = Lpαβ
diβ (t− ταβ)

dt
(3)

vP,γ (t) = Pγδqδ (t− τγδ) (4)

where ταβ = Rαβ/c0 and τγδ = Rγδ/c0 are the center-
to-center propagation times between the corresponding basis-
function domains, andc0 denotes the free-space speed of light.
Hence, partial inductance and coefficient of potential matrices
act as a delay operator for time derivatives of currents and
charges, respectively

vL(t) = Lp
di(t− τL)

dt
= L̃p (τL)

di(t)
dt

(5a)

v(t) = Pq(t− τC) = P̃ (τC) q(t) (5b)

whereτL andτC denote the center-to-center delay matrices
for the magnetic and electric field couplings, respectively.

Generalized Kirchoff’s laws, for conductors, can be rewrit-
ten as

dq(t)
dt

−AT i(t) + ie(t) = 0 (6a)

−Av(t)− L̃p (τL)
di(t)
dt

−Ri(t) = 0 (6b)

where A is the connectivity matrix,v(t) denotes the node
potentials to infinity, i(t) and ie(t) represent the currents
flowing in volume cells and the external currents, respectively.

The previous equation (6b) has to be modified when di-
electrics are considered, since the resistanceR is substituted
by the excess capacitance which relates the polarization charge
and the corresponding voltage drop asvd(t) = C−1

d qd(t) [13].
Hence, for dielectric elementary cells, (6) become

dq(t)
dt

−AT i(t) + ie(t) = 0 (7a)

−Av(t)− L̃p (τL)
di(t)
dt

− vd(t) = 0 (7b)

i(t) = Cd
dvd(t)

dt
(7c)

A selection matrixK is introduced to define the port voltages
by selecting node potentials. The same matrix is used to obtain
the external currentsie(t) by the currentsis(t) which are of
opposite sign with respect to the port currentsip(t)

vp(t) = Kv(t) (8a)

ie(t) = KT is(t). (8b)

An example ofτPEEC circuit for a conductor elementary
cell is illustrated, in the Laplace domain, in Fig. 1 where
the current controlled voltage sourcessLp,ijIj and the charge
controlled current sourcesdQi/dt model the magnetic and
electric field couplings, respectively.
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Fig. 1. Illustration ofτPEEC circuit electrical quantities for a conductor
elementary cell.

Descriptor representation of PEEC circuits

We assume that the system under analysis consists of con-
ductors and dielectrics. Let the current and charge densities be
defined in volumes and surface of conductors and dielectrics,
respectively. The Galerkin approach is applied to convert the
continuous electromagnetic problem described by the EFIE to
a discrete problem in terms of electrical circuit quantities. Let
us denote withnn the number of nodes andni the number
of branches where currents flow. Among the latter, we denote
with nc and nd the number of branches of conductors and
dielectrics, respectively. Furthermore, let us assume to be
interested in generating an admittance representation having
np output currentsip(t) under voltage excitationvp(t). Since
dielectrics require the excess capacitance to model the po-
larization charge [13], additionalnd unknowns are needed in
addition to currents. Hence, if the MNA approach [14] is used,
the global number of unknowns isnu = ni + nd + nn + np.
In a matrix form, (6)-(8), taking (5) into account, read




Inn,nn 0nn,ni 0nn,nd
0nn,np

0ni,nn L̃p (τL) 0ni,nd
0ni,np

0nd,nn 0nd,ni Cd 0nd,np

0np,nn 0np,ni 0np,nd
0np,np




︸ ︷︷ ︸
C

d

dt




q(t)
i(t)

vd(t)
is(t)




︸ ︷︷ ︸
x(t)

=

−




0nn,nn −AT 0nn,nd
KT

AP̃ (τC) R Φ 0ni,np

0nd,nn −ΦT 0nd,nd
0nd,np

−KP̃ (τC) 0np,ni 0np,nd
0np,np




︸ ︷︷ ︸
G

·




q(t)
i(t)

vd(t)
is(t)




︸ ︷︷ ︸
x(t)

+

[
0nn+ni+nd,np

−Inp,np

]

︸ ︷︷ ︸
B

· [ vp(t)
]

︸ ︷︷ ︸
u(t)

(9)

whereInp,np is the identity matrix of dimensions equal to the
number of ports. MatrixΦ is

Φ =

[
0nc,nd

Ind,nd

]
(10)

If the delay operator̃P (τC) is applied to the first equation in
(9), the system can be recast as




P̃ (τC) 0nn,ni
0nn,nd

0nn,np

0ni,nn
L̃p (τL) 0ni,nd

0ni,np

0nd,nn 0nd,ni Cd 0nd,np

0np,nn
0np,ni

0np,nd
0np,np




︸ ︷︷ ︸
C

d

dt




q(t)
i(t)

vd(t)
is(t)




︸ ︷︷ ︸
x(t)

=

−




0nn,nn
−P̃ (τC) AT 0nn,nd

P̃ (τC) KT

AP̃ (τC) R Φ 0ni,np

0nd,nn −ΦT 0nd,nd
0nd,np

−KP̃ (τC) 0np,ni
0np,nd

0np,np




︸ ︷︷ ︸
G

·

·




q(t)
i(t)

vd(t)
is(t)




︸ ︷︷ ︸
x(t)

+

[
0nn+ni+nd,np

−Inp,np

]

︸ ︷︷ ︸
B

· [ vp(t)
]

︸ ︷︷ ︸
u(t)

(11)

In a more compact form, (11) can be rewritten as

C (τ )
dx(t)

dt
= −G (τ ) x(t) + Bu(t) (12a)

ip(t) = LT x(t) (12b)

wherex(t) ∈ <nu×1 and τ ∈ <nτ×1 contains all delays
τL, τC , which denote the center-to-center delay matrices for
the magnetic and electric field coupling. Since this is annp-
port formulation, whereby the only sources are the voltage
sources at thenp-port nodes,B = L where B ∈ <nu×np .
Each delayed entry of matricesC (τ ) andG (τ ) act as a delay
operator for the corresponding entry of vectorx(t). Hence,
(12) can be re-written in the Laplace domain as:

sC(s)X(s) = −G(s)X(s) + BVp(s) (13)

Ip(s) = BT X(s) (14)

C(s) = C0 +
nτ∑

k=1

Cke−sτk (15)

G(s) = G0 +
nτ∑

k=1

Gke−sτk (16)

III. S INGLE POINT AND MULTIPOINT DELAYED MODEL

ORDER REDUCTION

In [12], an equivalent first order system is computed by
means of a single point Taylor expansion [9] and a correspond-
ing orthogonal projection matrix is computed by means of a
block Arnoldi algorithm [3]. Then, an orthogonal projection
matrix for the original NDDE system is extracted and a
reduced NDDE system is obtained. The NDDE formulation is
preserved in the reduction process. The equivalent first order
system obtained after the single point Taylor expansion of
exponential terms has an order equal toqnu, whereq is the
order of the Taylor expansion andnu the order of the original
NDDE system [12]. The reduction of equivalent first order



Algorithm 1: MULTIPOINT(NDDEorig, {sk}npoints

k=1 , nr, q)

comment:Multipoint computation of basisQ



Q1 = One point DMOR(NDDEorig, s1, nr, q);
Q = Q1;
for k ← 2 to npoints

do
{

Qk = One point DMOR(NDDEorig, sk, nr, q);
Q = ([Q, Qk]);

Q = orth(Q);

Fig. 2. Pseudocode for computing the orthogonal basisQ in the multipoint
expansion case.

systems becomes computationally expensive and sometimes
not feasible, when large delays (2πfreqmaxτmax > 10)
[11] are involved, since exponential terms with large delays
need many terms in the Taylor expansion to be accurately
approximated. The multipoint feature [15] addresses this issue
and is able to accurately reduce NDDE systems with large
delays, since a small expansion Taylor order can be used
for each expansion point and the accuracy of the reduced
model is increased by adding new expansion points. An
adaptive multipoint expansion and MOR of equivalent first
order systems are used in the proposed novel MOR algorithm.
As in [12], the NDDE formulation is preserved. Assuming that
the order of the Taylor expansion is fixed for each expansion
point, an adaptive algorithm is used to choose the expansion
points. At each expansion point, the MOR algorithm described
in [12] is applied and the corresponding projection matrix
Qi, i = 1, . . . , npoints is computed. The final projection
matrixQ is based on the orthogonalization of the stack column
collection of all single expansion point projection matrices.
The computation ofQ in the case of multipoint expansion
is explained in the flowchart in Fig. 2. The MOR algorithm
described in [12] is calledOne point DMOR in Fig. 2, where
nr = qnp represents the reduced order for each expansion
point.

OnceQ is computed, it is applied to the original NDDE system
(13)-(14) and a reduced NDDE system

sCr(s)χ(s) = −Gr(s)χ(s) + BrVp(s) (17)

Ip(s) = BT
r χ(s) (18)

Cr(s) = Cr,0 +
nτ∑

k=1

Cr,ke−sτk (19)

Gr(s) = Gr,0 +
nτ∑

k=1

Gr,ke−sτk (20)

is obtained, where the following congruence transformations
are used

Cr,i = QT CiQ, i = 0, . . . , nτ (21a)

Gr,i = QT GiQ, i = 0, . . . , nτ (21b)

Br = QT B (21c)

Lr = QT L (21d)

Algorithm for the selection of expansion points

Assuming that the order of the Taylor expansionq is fixed
for each expansion point, an algorithm is needed to choose
the location of the expansion points. An adaptive and iterative
algorithm is proposed to determine the expansion points. It is
based on an iterative comparison between reduced and original
model. It starts from two expansion pointssmin = jωmin,
smax = jωmax located at the minimum and maximum
frequency of interest and the corresponding reduced model
is compared with the original model in the midpoint between
smin and smax, thereforesmid,1 = smin+smax

2 . If an error
threshold is satisfied, then the algorithm stops, otherwise this
midpoint is considered as a new expansion point and a new
reduced model is computed, which contain information from
all the expansion pointssmin, smid,1, smax, and it is com-
pared with the original model in two new points, namely the
midpoints of the intervals[smin, smid,1] and [smid,1, smax].
If no comparison point exceeds the error threshold, then
the algorithm stops, otherwise the new expansion points for
the next iteration are chosen as the comparison points that
exceed the error threshold. If some comparison points satisfy
the error threshold, the corresponding intervals defined by
expansion points are considered to be accurately described
and are not checked for accuracy in the next iterations. The
comparison points at each iteration are the midpoints of
all intervals defined by expansion points, except those ones
considered accurate in the previous iterations. Concerning the
error criterion, let us define the weighted RMS-error as

Err =

=

√√√√
∑(np)2

i=1

∑Ks

k=1

∣∣∣wYi(sk)
(
Yr,i(sk)− Yi(sk

)∣∣∣
2

(np)2Ks
(22)

with

wYi(s) = |(Yi(s))−1| (23)

In the comparison step at each iteration, the error is computed
on each comparison point separately, thereforeKs = 1 and
the accuracy threshold is chosen equal to0.05.

IV. N UMERICAL RESULTS

A numerical example compares the approach described in
[12] with the new proposed approach. It shows that the new
MOR technique is able to accurately reduce a system with
large delays, while the technique in [12], based on a single
point expansion, does not perform well. The proposed MOR
algorithm was implemented in Matlab R2009A [16] and all



experiments were carried out on Windows platform on Intel
Core2 Extreme CPU Q9300 2.53GHz machines with8GB
RAM.

Three Wires with Bend

A system composed of three long, parallel, bent wires
terminating on the same vertical plane is modeled in this
example. It is shown in Fig. 3. The system is analyzed on
the frequency range[0.0001, 5] GHz. The three ports of the
system are defined between conductors1−4, 2−5 and3−6.

Fig. 3. Three wires with bend.

The order of the originalτPEEC model is equal tonu =
3039, the number of delays is equal to899 and the largest
delay gives2πfreqmaxτmax = 19.2. Table I shows some
parameters of the new proposed MOR method and the MOR
method described in [12].

TABLE I
MOR PARAMETERS.

Parameter Multipoint expansion Single point expansion
Taylor terms 3 3
Expansion points 25 1
Reduced order 450 18
Error reduced model 0.03 2.60

Figs. 4-7 compare the magnitude and phase of the original
and reduced NDDE models ofY11(s) and Y13(s) obtained
by the new proposed MOR method and the MOR method
presented in [12]. The number of moments matched per
expansion point has been chosen equal to3, since a higher
order leads to an equivalent first order system that cannot be
handled by the computer used for the simulations due to RAM
limitation. As clearly seen, the presented MOR method can
reduce a large NDDE system with large delay terms, while
accurately preserving the behavior of the original system. The
single point expansion method presented in [12] is not able
to accurately reduce the original NDDE system and the new
proposed method overcomes its limitations.
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V. CONCLUSIONS

We have proposed a new model order reduction technique
for large NDDE systems, which is applicable toτPEEC
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models. It is able to accurately reduce electrically large
structures where delays among coupled elements cannot be
neglected or easily approximated by rational basis functions.
An adaptive multipoint expansion and MOR of equivalent
first order systems are combined in the new proposed MOR
method. The NDDE formulation is preserved in the reduced
model. Numerical results based on theτPEEC method have
validated the proposed MOR approach.
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