14 research outputs found

    Enrichment of intracellular sulphur cycle –associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis

    Get PDF
    Benthic foraminifera are known to play an important role in marine carbon and nitrogen cycles. Here, we report an enrichment of sulphur cycle -associated bacteria inside intertidal benthic foraminifera (Ammonia sp. (T6), Haynesina sp. (S16) and Elphidium sp. (S5)), using a meta barcoding approach targeting the 16S rRNA and aprA -genes. The most abundant intracellular bacterial groups included the genus Sulfurovum and the order Desulfobacterales. The bacterial 16S OTUs are likely to originate from the sediment bacterial communities, as the taxa found inside the foraminifera were also present in the sediment. The fact that 16S rRNA and aprA -gene derived intracellular bacterial OTUs were species-specific and significantly different from the ambient sediment community implies that bacterivory is an unlikely scenario, as benthic foraminifera are known to digest bacteria only randomly. Furthermore, these foraminiferal species are known to prefer other food sources than bacteria. The detection of sulphur-cycle related bacterial genes in this study suggests a putative role for these bacteria in the metabolism of the foraminiferal host. Future investigation into environmental conditions under which transcription of S-cycle genes are activated would enable assessment of their role and the potential foraminiferal/endobiont contribution to the sulphur-cycle.Peer reviewe

    Magnetic resonance spectroscopy and neuropsychological dysfunction in OSA, before and after CPAP

    No full text
    Study Objectives: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. Design: Observational, before and after CPAP treatment. Setting: Two tertiary hospital research institutes. Participants: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). Measurements and Results: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = −0.39, corrected P = 0.033) and between % total sleep time at SpO2 < 90% and hippocampal Cho/Cr (r = −0.40, corrected P = 0.01). Conclusions: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia

    High prevalence of undiagnosed obstructive sleep apnoea in the general population and methods for screening for representative controls

    No full text
    Purpose: Undiagnosed obstructive sleep apnoea (OSA) in the community makes comparisons of OSA subjects with control samples from the general population problematic. This study aims to estimate undiagnosed moderate to severe OSA in a general population sample and to determine the capacity of questions from the Berlin questionnaire (BQ) to identify subjects without diagnosed OSA of this severity. Methods: Using a general population sample (n0793) with no history of OSA, case and control status for moderate- severe OSA was determined by home-based nasal flow and oximetry-derived apnoea-hypopnoea index using a cut-off value of =15 events/h to define cases. The diagnostic accuracy of the complete BQ and its component questions in identifying cases was assessed by calculating sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios and post-test probabilities. Results: The age-standardised prevalence estimate of moderate- severe OSA was 9.1 % (12.4 % in men, 5.7 % in women). Sensitivity of the BQ in this population was 54 %, and specificity, 70 %. A combination of questions regarding snoring frequency and hypertension provided maximal post-test probability of OSA and greatest post-screen sample size. Conclusions: Undiagnosed OSA is highly prevalent in the Western Australian general population. While the complete BQ is a sub-optimal screening instrument for the general population, snoring frequency or hypertension can be used to screen out moderate-severe OSA from general population samples with limited reduction in sample size. As there are few general population samples available for epidemiological or genetic studies of OSA and its associated phenotypes, these results may usefully inform future case-control studies

    Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara

    No full text
    To extend comparative metagenomic analyses of the deep-sea, we produced metagenomic data by direct 454 pyrosequencing from bathypelagic plankton (1000 m depth) and bottom sediment of the Sea of Marmara, the gateway between the Eastern Mediterranean and the Black Seas. Data from small subunit ribosomal RNA (SSU rRNA) gene libraries and direct pyrosequencing of the same samples indicated that Gamma- and Alpha-proteobacteria, followed by Bacteroidetes, dominated the bacterial fraction in Marmara deep-sea plankton, whereas Planctomycetes, Delta- and Gamma-proteobacteria were the most abundant groups in high bacterial-diversity sediment. Group I Crenarchaeota/Thaumarchaeota dominated the archaeal plankton fraction, although group II and III Euryarchaeota were also present. Eukaryotes were highly diverse in SSU rRNA gene libraries, with group I (Duboscquellida) and II (Syndiniales) alveolates and Radiozoa dominating plankton, and Opisthokonta and Alveolates, sediment. However, eukaryotic sequences were scarce in pyrosequence data. Archaeal amo genes were abundant in plankton, suggesting that Marmara planktonic Thaumarchaeota are ammonia oxidizers. Genes involved in sulfate reduction, carbon monoxide oxidation, anammox and sulfatases were over-represented in sediment. Genome recruitment analyses showed that Alteromonas macleodii ‘surface ecotype', Pelagibacter ubique and Nitrosopumilus maritimus were highly represented in 1000 m-deep plankton. A comparative analysis of Marmara metagenomes with ALOHA deep-sea and surface plankton, whale carcasses, Peru subsurface sediment and soil metagenomes clustered deep-sea Marmara plankton with deep-ALOHA plankton and whale carcasses, likely because of the suboxic conditions in the deep Marmara water column. The Marmara sediment clustered with the soil metagenome, highlighting the common ecological role of both types of microbial communities in the degradation of organic matter and the completion of biogeochemical cycles
    corecore