10 research outputs found

    Slow Wave Sleep and Long Duration Spaceflight

    Get PDF
    While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages

    Impact of Common Diabetes Risk Variant in MTNR1B

    Full text link
    The risk of type 2 diabetes (T2D) is increased by abnormalities in sleep quantity and quality, circadian alignment, and melatonin regulation. A common genetic variant in a receptor for the circadian-regulated hormone melatonin (MTNR1B) is associated with increased fasting blood glucose and risk of T2D, but whether sleep or circadian disruption mediates this risk is unknown. We aimed to test if MTNR1B diabetes risk variant rs10830963 associates with measures of sleep or circadian physiology in intensive in-laboratory protocols (n = 58–96) or cross-sectional studies with sleep quantity and quality and timing measures from self-report (n = 4,307–10,332), actigraphy (n = 1,513), or polysomnography (n = 3,021). In the in-laboratory studies, we found a significant association with a substantially longer duration of elevated melatonin levels (41 min) and delayed circadian phase of dim-light melatonin offset (1.37 h), partially mediated through delayed offset of melatonin synthesis. Furthermore, increased T2D risk in MTNR1B risk allele carriers was more pronounced in early risers versus late risers as determined by 7 days of actigraphy. Our results provide the surprising insight that the MTNR1B risk allele influences dynamics of melatonin secretion, generating a novel hypothesis that the MTNR1B risk allele may extend the duration of endogenous melatonin production later into the morning and that early waking may magnify the diabetes risk conferred by the risk allele

    The Progression of Circadian Phase during Light Exposure in Animals and Humans

    Get PDF
    Studies in humans and mice revealed that circadian phase shifting effects of light are larger at the beginning of a light exposure interval than during subsequent exposure. Little is known about the dynamics of this response reduction phenomenon. Here the authors propose a method to obtain information on the progression of phase during light exposure. Phase response curves to intervals of light exposure over a wide range in duration are available for flesh flies, mice, and humans. By comparing the phase shifts induced by pulses of various durations but starting at the same circadian phase, the progression of phase during a long interval (hours) of light exposure is reconstructed for each of these 3 species. For flies, the phase progression curves show that light pulses—if long enough—eventually make the pacemaker stabilize around InT18 (near subjective dusk), as is typical for strong resetting. The progression of phase toward the final value never shows advances larger than 7 h, while delays can be as large as 18 h. By applying the phase progression curve method presented in this study, differences between advances and delays in type-0 phase response curves can be distinguished clearly. In flesh flies (Sarcophaga) this bifurcation between delays and advance occurs when light exposure starts at InT0 (subjective midnight). The present study confirms earlier findings in mice showing that the beginning of the light pulse generates stronger phase shifts than subsequent hours of light. Response reduction is complete within 1 h of exposure. It is argued that the variation is not so much due to light adaptation processes, but rather to response saturation. In contrast to light adaptation, response saturation is fundamental to proper functioning of the circadian pacemaker during natural entrainment. For understanding entrainment of the pacemaker to natural light, phase progression curves in which naturalistic light profiles are applied could be an important tool.

    Effects of caffeine and blue-enriched light on spare visual attention during simulated space teleoperation

    No full text
    Abstract Safe and successful operation of the International Space Station robotic arm is a complex task requiring difficult bimanual hand coordination and spatial reasoning skills, adherence to operating procedures and rules, and systems knowledge. These task attributes are all potentially affected by chronic sleep loss and circadian misalignment. In a randomized, placebo-controlled, cross-over trial examining the impact of regularly timed low-dose caffeine (0.3 mg kg−1 h−1) and moderate illuminance blue-enriched white light (~90 lux, ~88 melEDI lux, 6300 K), 16 participants performed 3 types of realistic robotic arm tasks using a high-fidelity desktop simulator overnight. Our goal was to determine how these countermeasures, separately and combined, impacted telerobotic task performance and the ability to allocate attention to an unrelated secondary visual task. We found that all participants maintained a similar level of robotic task performance throughout the primary task but the application of caffeine separately and with blue-enriched light significantly decreased response time to a secondary visual task by −9% to −13%, whereas blue-enriched light alone changed average response times between −4% and +2%. We conclude that, for sleep-restricted individuals, caffeine improved their ability to divide their visual attention, while the effect of blue-enriched light alone was limited. Light and caffeine together was most effective. Use of these countermeasures should improve the margin of safety if astronauts perform familiar tasks under degraded conditions or novel tasks where task workload is increased

    Effectiveness of caffeine and blue-enriched light on cognitive performance and electroencephalography correlates of alertness in a spaceflight robotics simulation

    No full text
    Abstract Human cognitive impairment associated with sleep loss, circadian misalignment and work overload is a major concern in any high stress occupation but has potentially catastrophic consequences during spaceflight human robotic interactions. Two safe, wake-promoting countermeasures, caffeine and blue-enriched white light have been studied on Earth and are available on the International Space Station. We therefore conducted a randomized, placebo-controlled, cross-over trial examining the impact of regularly timed low-dose caffeine (0.3 mg per kg per h) and moderate illuminance blue-enriched white light (~90 lux, ~88 melEDI lux, 6300 K) as countermeasures, separately and combined, in a multi-night simulation of sleep-wake shifts experienced during spaceflight among 16 participants (7 F, ages 26–55). We find that chronic administration of low-dose caffeine improves subjective and objective correlates of alertness and performance during an overnight work schedule involving chronic sleep loss and circadian misalignment, although we also find that caffeine disrupts subsequent sleep. We further find that 90 lux of blue-enriched light moderately reduces electroencephalogram (EEG) power in the theta and delta regions, which are associated with sleepiness. These findings support the use of low-dose caffeine and potentially blue-enriched white light to enhance alertness and performance among astronauts and shiftworking populations

    Increased vulnerability to attentional failure during acute sleep deprivation in women depends on menstrual phase

    No full text
    Study Objectives: To investigate sex differences in the effect of sleep deprivation on performance, accounting for menstrual phase in women. Methods: We examined alertness data from 124 healthy women and men (40 women, 84 men; aged 18-30 years) who maintained wakefulness for at least 30 hr in a laboratory setting using a constant routine protocol. Objective alertness was assessed every 2 hr using a 10 min psychomotor vigilance task. Subjective alertness was assessed every hour via the Karolinska Sleepiness Scale. Results: Women in the follicular phase of the menstrual cycle demonstrated the poorest level of performance. This poor performance was most pronounced at times corresponding to the typical sleep episode, demonstrating a window of vulnerability at night during this menstrual phase. At 24 hr awake, over 60 per cent of their responses were lapses of >500 ms and over one-third of their responses were longer lapses of at least 3 s in duration. Women in the luteal phase, however, were relatively protected from alertness failure, performing similar or better than both follicular-phase women and men. Conclusions: These results have important implications for education and intervention programs for shift workers, specifically during times of vulnerability to attentional failure that increase risk of injury. © Sleep Research Society 2018. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved

    Chronotype Genetic Variant in PER2 is Associated with Intrinsic Circadian Period in Humans

    No full text
    Abstract The PERIOD2 (PER2) gene is a core molecular component of the circadian clock and plays an important role in the generation and maintenance of daily rhythms. Rs35333999, a missense variant of PER2 common in European populations, has been shown to associate with later chronotype. Chronotype relates to the timing of biological and behavioral activities, including when we sleep, eat, and exercise, and later chronotype is associated with longer intrinsic circadian period (cycle length), a fundamental property of the circadian system. Thus, we tested whether this PER2 variant was associated with circadian period and found significant associations with longer intrinsic circadian period as measured under forced desynchrony protocols, the ‘gold standard’ for intrinsic circadian period assessment. Minor allele (T) carriers exhibited significantly longer circadian periods when determinations were based on either core body temperature or plasma melatonin measurements, as compared to non-carriers (by 12 and 11 min, respectively; accounting for ~7% of inter-individual variance). These findings provide a possible underlying biological mechanism for inter-individual differences in chronotype, and support the central role of PER2 in the human circadian timing system

    Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology

    No full text
    The risk of type 2 diabetes (T2D) is increased by abnormalities in sleep quantity and quality, circadian alignment, and melatonin regulation. A common genetic variant in a receptor for the circadian-regulated hormone melatonin (MTNR1B) is associated with increased fasting blood glucose and risk of T2D, but whether sleep or circadian disruption mediates this risk is unknown. We aimed to test if MTNR1B diabetes risk variant rs10830963 associates with measures of sleep or circadian physiology in intensive in-laboratory protocols (n = 58–96) or cross-sectional studies with sleep quantity and quality and timing measures from self-report (n = 4,307–10,332), actigraphy (n = 1,513), or polysomnography (n = 3,021). In the in-laboratory studies, we found a significant association with a substantially longer duration of elevated melatonin levels (41 min) and delayed circadian phase of dim-light melatonin offset (1.37 h), partially mediated through delayed offset of melatonin synthesis. Furthermore, increased T2D risk in MTNR1B risk allele carriers was more pronounced in early risers versus late risers as determined by 7 days of actigraphy. Our results provide the surprising insight that the MTNR1B risk allele influences dynamics of melatonin secretion, generating a novel hypothesis that the MTNR1B risk allele may extend the duration of endogenous melatonin production later into the morning and that early waking may magnify the diabetes risk conferred by the risk allele

    Cell Penetrant Inhibitors of the KDM4 and KDM5 Families of Histone Lysine Demethylases. 1. 3‑Amino-4-pyridine Carboxylate Derivatives

    No full text
    Optimization of KDM6B (JMJD3) HTS hit <b>12</b> led to the identification of 3-((furan-2-ylmethyl)­amino)­pyridine-4-carboxylic acid <b>34</b> and 3-(((3-methylthiophen-2-yl)­methyl)­amino)­pyridine-4-carboxylic acid <b>39</b> that are inhibitors of the KDM4 (JMJD2) family of histone lysine demethylases. Compounds <b>34</b> and <b>39</b> possess activity, IC<sub>50</sub> ≤ 100 nM, in KDM4 family biochemical (RFMS) assays with ≥50-fold selectivity against KDM6B and activity in a mechanistic KDM4C cell imaging assay (IC<sub>50</sub> = 6–8 μM). Compounds <b>34</b> and <b>39</b> are also potent inhibitors of KDM5C (JARID1C) (RFMS IC<sub>50</sub> = 100–125 nM)
    corecore