490 research outputs found

    Electron-phonon interaction dressed by electronic correlations near charge ordering as the origin for superconductivity in cobaltates

    Full text link
    We consider possible routes to superconductivity in hydrated cobaltates Na_xCoO_2.yH_2O on the basis of the t-J-V model plus phonons on the triangular lattice. We studied the stability conditions for the homogeneous Fermi liquid (HFL) phase against different broken symmetry phases. Besides the sqrt(3)xsqrt(3)-CDW phase, triggered by the nearest-neighbour Coulomb interaction V, we have found that the HFL is unstable, at very low doping, against a bond-ordered phase due to J. We also discuss the occurrence of phase separation at low doping and V. The interplay between the electron-phonon interaction and correlations near the sqrt(3)xsqrt(3)-CDW leads to superconductivity in the unconventional next-nearest neighbour f-wave (NNN-f) channel with a dome shape for Tc around x ~ 0.35, and with values of a few Kelvin as seen in experiments. Near the bond-ordered phase at low doping we found tendencies to superconductivity with d-wave symmetry for finite J and x<0.15. Contact with experiments is given along the paper.Comment: 21 pages, 6 figure

    Atomic and itinerant effects at the transition metal x-ray absorption K-pre-edge exemplified in the case of V2_2O3_3

    Full text link
    X-ray absorption spectroscopy is a well established tool for obtaining information about orbital and spin degrees of freedom in transition metal- and rare earth-compounds. For this purpose usually the dipole transitions of the L- (2p to 3d) and M- (3d to 4f) edges are employed, whereas higher order transitions such as quadrupolar 1s to 3d in the K-edge are rarely studied in that respect. This is due to the fact that usually such quadrupolar transitions are overshadowed by dipole allowed 1s to 4p transitions and, hence, are visible only as minor features in the pre-edge region. Nonetheless, these features carry a lot of valuable information, similar to the dipole L-edge transition, which is not accessible in experiments under pressure due to the absorption of the diamond anvil pressurecell. We recently performed a theoretical and experimental analysis of such a situation for the metal insulator transition of (V(1-x)Crx)2O3. Since the importance of the orbital degrees of freedom in this transition is widely accepted, a thorough understanding of quadrupole transitions of the vanadium K-pre-edge provides crucial information about the underlying physics. Moreover, the lack of inversion symetry at the vanadium site leads to onsite mixing of vanadium 3d- and 4p- states and related quantum mechanical interferences between dipole and quadrupole transitions. Here we present a theoretical analysis of experimental high resolution x-ray absorption spectroscopy at the V pre-K edge measured in partial fluorescence yield mode for single crystals. We carried out density functional as well as configuration interaction calculations in order to capture effects coming from both, itinerant and atomic limits

    Understanding the complex phase diagram of uranium: the role of electron-phonon coupling

    Full text link
    We report an experimental determination of the dispersion of the soft phonon mode along [1,0,0] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent theory. New calculations demonstrate the strong pressure (and momentum) dependence of the electron-phonon coupling, whereas the Fermi-surface nesting is surprisingly independent of pressure. This allows a full understanding of the complex phase diagram of uranium, and the interplay between the charge-density wave and superconductivity

    Hard x-ray spectroscopy in NaxCoO2 and superconducting NaxCoO2 - yH2O: A view on the bulk Co electronic properties

    Get PDF
    The electronic properties of Co in bulk Na0.7CoO2 and the superconducting hydrated compound Na0.35CoO2 - y H2O have been investigated by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) using hard x-rays. The XAS spectra at the Co K-edge were measured in both compounds with two different polarization directions. The changes in the XAS spectra upon hydration and their polarization dependence are well accounted for by linear muffin- tin orbital calculations in the local density approximation. The underlying electronic structure indicates the strong hybridization between the Co 3d and O 2p states in both compounds, while the electron localization is enhanced in the hydrated compound due to the increase of the Co-Co interplanar distance. The Co K pre-edge further highlights the splitting of the d band as a result of the crystal field effect and demonstrates the Co valency increase when Na0.7CoO2 is hydrated. The RIXS spectra measured at the Co K-edge show an energy loss feature around 10 eV in both compounds in fair agreement with the calculated dynamical structure factor. The RIXS feature is associated to a damped plasmon excitation.Comment: 8 page
    corecore