X-ray absorption spectroscopy is a well established tool for obtaining
information about orbital and spin degrees of freedom in transition metal- and
rare earth-compounds. For this purpose usually the dipole transitions of the L-
(2p to 3d) and M- (3d to 4f) edges are employed, whereas higher order
transitions such as quadrupolar 1s to 3d in the K-edge are rarely studied in
that respect. This is due to the fact that usually such quadrupolar transitions
are overshadowed by dipole allowed 1s to 4p transitions and, hence, are visible
only as minor features in the pre-edge region. Nonetheless, these features
carry a lot of valuable information, similar to the dipole L-edge transition,
which is not accessible in experiments under pressure due to the absorption of
the diamond anvil pressurecell. We recently performed a theoretical and
experimental analysis of such a situation for the metal insulator transition of
(V(1-x)Crx)2O3. Since the importance of the orbital degrees of freedom in this
transition is widely accepted, a thorough understanding of quadrupole
transitions of the vanadium K-pre-edge provides crucial information about the
underlying physics. Moreover, the lack of inversion symetry at the vanadium
site leads to onsite mixing of vanadium 3d- and 4p- states and related quantum
mechanical interferences between dipole and quadrupole transitions. Here we
present a theoretical analysis of experimental high resolution x-ray absorption
spectroscopy at the V pre-K edge measured in partial fluorescence yield mode
for single crystals. We carried out density functional as well as configuration
interaction calculations in order to capture effects coming from both,
itinerant and atomic limits