191 research outputs found

    GISS Analysis of Surface Temperature Changes

    Get PDF
    We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling

    MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    Get PDF
    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. <br><br> A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to oversimplifications of the representation of sea salt emissions – sea salt emissions are only calculated for two size classes – than to inherent limitations of MATRIX

    Total aerosol effect: forcing or radiative flux perturbation

    No full text
    Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to define properly. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models

    Race, Socioeconomic Status, and Treatment Center Are Associated with Insulin Pump Therapy in Youth in the First Year Following Diagnosis of Type 1 Diabetes

    Full text link
    Background: Increasing numbers of children and adolescents with type 1 diabetes (T1D) have been placed on insulin pump therapy. Nevertheless, data are limited regarding patterns of pump use during the first year of treatment and the clinical and socioeconomic factors associated with early use of pump therapy. Therefore, we sought to determine factors associated with pump therapy within the first year of diagnosis in youth enrolled in the Pediatric Diabetes Consortium (PDC) T1D New-Onset (NeOn) Study. Subjects and Methods: The NeOn Study includes youth <19 years old at T1D diagnosis who have been followed from the time of diagnosis at seven U.S. pediatric diabetes centers. Cox regression was used to determine factors associated with transition from injection to pump therapy during the first year of T1D in 1,012 participants. Results: Twenty-seven percent (n=254) of participants began pump therapy within the first year of diagnosis, ranging from 18% to 59% among the seven centers. After adjusting for center effect, factors associated with pump use in multivariate analysis included private health insurance (37% vs. 7%; P<0.001), having annual household income over $100,000 (50% vs. 15%; P<0.001), and non-Hispanic white race (36% vs. 11%; P<0.001). The hemoglobin A1c level did not appear to influence the decision to initiate pump use. Conclusions: Participants of non-Hispanic white race and higher socioeconomic status were more likely to be placed on pumps during the first year. Further investigations are needed to gain a better understanding of barriers to use of pumps in youth with T1D, especially in disadvantaged and minority families.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140353/1/dia.2013.0132.pd

    Evidence for Planet-induced Chromospheric Activity on HD 179949

    Full text link
    We have detected the synchronous enhancement of Ca II H & K emission with the short-period planetary orbit in HD 179949. High-resolution spectra taken on three observing runs extending more than a year show the enhancement coincides with phi ~ 0 (the sub-planetary point) of the 3.093-day orbit with the effect persisting for more than 100 orbits. The synchronous enhancement is consistent with planet-induced chromospheric heating by magnetic rather than tidal interaction. Something which can only be confirmed by further observations. Independent observations are needed to determine whether the stellar rotation is sychronous with the planet's orbit. Of the five 51 Peg-type systems monitored, HD 179949 shows the greatest chromospheric H & K activity. Three others show significant nightly variations but the lack of any phase coherence prevents us saying whether the activity is induced by the planet. Our two standards, tau Ceti and the Sun, show no such nightly variations.Comment: 10 pages, 6 figures. Submitted to Ap
    corecore