2,041 research outputs found

    Basel III: The Banking Band-Aid?

    Get PDF

    Basel III: The Banking Band-Aid?

    Get PDF

    Intertwining Operators And Quantum Homogeneous Spaces

    Full text link
    In the present paper the algebras of functions on quantum homogeneous spaces are studied. The author introduces the algebras of kernels of intertwining integral operators and constructs quantum analogues of the Poisson and Radon transforms for some quantum homogeneous spaces. Some applications and the relation to qq-special functions are discussed.Comment: 20 pages. The general subject is quantum groups. The paper is written in LaTe

    Density of states of a two-dimensional electron gas in a non-quantizing magnetic field

    Full text link
    We study local density of electron states of a two-dimentional conductor with a smooth disorder potential in a non-quantizing magnetic field, which does not cause the standart de Haas-van Alphen oscillations. It is found, that despite the influence of such ``classical'' magnetic field on the average electron density of states (DOS) is negligibly small, it does produce a significant effect on the DOS correlations. The corresponding correlation function exhibits oscillations with the characteristic period of cyclotron quantum ωc\hbar\omega_c.Comment: 7 pages, including 3 figure

    Continuous slice functional calculus in quaternionic Hilbert spaces

    Full text link
    The aim of this work is to define a continuous functional calculus in quaternionic Hilbert spaces, starting from basic issues regarding the notion of spherical spectrum of a normal operator. As properties of the spherical spectrum suggest, the class of continuous functions to consider in this setting is the one of slice quaternionic functions. Slice functions generalize the concept of slice regular function, which comprises power series with quaternionic coefficients on one side and that can be seen as an effective generalization to quaternions of holomorphic functions of one complex variable. The notion of slice function allows to introduce suitable classes of real, complex and quaternionic CC^*--algebras and to define, on each of these CC^*--algebras, a functional calculus for quaternionic normal operators. In particular, we establish several versions of the spectral map theorem. Some of the results are proved also for unbounded operators. However, the mentioned continuous functional calculi are defined only for bounded normal operators. Some comments on the physical significance of our work are included.Comment: 71 pages, some references added. Accepted for publication in Reviews in Mathematical Physic

    Algebras generated by two bounded holomorphic functions

    Full text link
    We study the closure in the Hardy space or the disk algebra of algebras generated by two bounded functions, of which one is a finite Blaschke product. We give necessary and sufficient conditions for density or finite codimension of such algebras. The conditions are expressed in terms of the inner part of a function which is explicitly derived from each pair of generators. Our results are based on identifying z-invariant subspaces included in the closure of the algebra. Versions of these results for the case of the disk algebra are given.Comment: 22 pages ; a number of minor mistakes have been corrected, and some points clarified. Conditionally accepted by Journal d'Analyse Mathematiqu

    Microscopic Conductivity of Lattice Fermions at Equilibrium - Part I: Non-Interacting Particles

    Full text link
    We consider free lattice fermions subjected to a static bounded potential and a time- and space-dependent electric field. For any bounded convex region RRd\mathcal{R}\subset \mathbb{R}^{d} (d1d\geq 1) of space, electric fields E\mathcal{E} within R\mathcal{R} drive currents. At leading order, uniformly with respect to the volume R\left| \mathcal{R}\right| of R\mathcal{R} and the particular choice of the static potential, the dependency on E\mathcal{E} of the current is linear and described by a conductivity distribution. Because of the positivity of the heat production, the real part of its Fourier transform is a positive measure, named here (microscopic) conductivity measure of R\mathcal{R}, in accordance with Ohm's law in Fourier space. This finite measure is the Fourier transform of a time-correlation function of current fluctuations, i.e., the conductivity distribution satisfies Green-Kubo relations. We additionally show that this measure can also be seen as the boundary value of the Laplace-Fourier transform of a so-called quantum current viscosity. The real and imaginary parts of conductivity distributions satisfy Kramers-Kronig relations. At leading order, uniformly with respect to parameters, the heat production is the classical work performed by electric fields on the system in presence of currents. The conductivity measure is uniformly bounded with respect to parameters of the system and it is never the trivial measure 0dν0\,\mathrm{d}\nu . Therefore, electric fields generally produce heat in such systems. In fact, the conductivity measure defines a quadratic form in the space of Schwartz functions, the Legendre-Fenchel transform of which describes the resistivity of the system. This leads to Joule's law, i.e., the heat produced by currents is proportional to the resistivity and the square of currents

    Quantum Separability of the vacuum for Scalar Fields with a Boundary

    Full text link
    Using the Green's function approach we investigate separability of the vacuum state of a massless scalar field with a single Dirichlet boundary. Separability is demonstrated using the positive partial transpose criterion for effective two-mode Gaussian states of collective operators. In contrast to the vacuum energy, entanglement of the vacuum is not modified by the presence of the boundary.Comment: 4 pages, 1 figure, Revtex, minor corrections. submitted to Phy. Rev.

    A topological central point theorem

    Get PDF
    In this paper a generalized topological central point theorem is proved for maps of a simplex to finite-dimensional metric spaces. Similar generalizations of the Tverberg theorem are considered.Comment: In this version some typos were corrected after the official publicatio

    On a conjecture about Dirac's delta representation using q-exponentials

    Full text link
    A new representation of Dirac's delta-distribution, based on the so-called q-exponentials, has been recently conjectured. We prove here that this conjecture is indeed valid
    corecore