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1. Introduction

Let us state the discrete version of the Neumann–Rado theorem [9,11,5] (see also the reviews [4] and [3]):

Theorem (The discrete central point theorem). Suppose X ⊂ R
d is a finite set with |X | = (d + 1)(r − 1) + 1. Then there exists x ∈ R

d

such that for any halfspace H � x

|H ∩ X | � r.

In this theorem a halfspace is a set {x ∈ R
d: λ(x) � 0} for a (possibly not homogeneous) linear function λ : R

d → R.
Using the Hahn–Banach theorem [12] we restate the conclusion of this theorem as follows: the point x is contained in the
convex hull of any subset F ⊆ X of at least d(r − 1) + 1 points.

When stated in terms of convex hulls, the central point theorem has an important and nontrivial generalization proved
in [15]:

Theorem (Tverberg’s theorem). Consider a finite set X ∈ R
d with |X | = (d + 1)(r − 1) + 1. Then X can be partitioned into r subsets

X1, . . . , Xr so that
r⋂

i=1

conv Xi 	= ∅.
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In [2,16] a topological generalization of the Tverberg theorem was established. Instead of taking a finite point set in R
d

and the convex hulls of its subsets, we take the continuous image of a simplex in R
d and the images of its faces (faces of

the simplex viewed as a simplicial complex):

Theorem (The topological Tverberg theorem). Let m = (d + 1)(r − 1), r be a prime power, and let �m be the m-dimensional simplex.
Suppose f : �m → Y is a continuous map to d-dimensional manifold Y . Then there exist r disjoint faces F1, . . . , Fr ⊂ �m such that

r⋂

i=1

f (Fi) 	= ∅.

It is still unknown whether such a theorem holds for r not equal to a prime power. But if we return to the central point
theorem, we see that the following topological version holds without restrictions on r. Moreover, the target space can be
any d-dimensional metric space, not necessarily a manifold. So the main result of this paper is:

Theorem 1.1. Let m = (d + 1)(r − 1), let �m be the m-dimensional simplex, and let W be a d-dimensional metric space. Suppose
f : �m → W is a continuous map. Then

⋂

F⊂�m

dim F=d(r−1)

f (F ) 	= ∅,

where the intersection is taken over all faces of dimension d(r − 1).

Note that for W = R
d this theorem can also be deduced from the topological Tverberg theorem (see Section 4 for details).

The goal of this paper is to give another proof of Theorem 1.1, valid for any d-dimensional W . In Section 5 we show that a
similar generalization of the Tverberg theorem for maps into finite-dimensional spaces essentially needs larger values of m.

The author thanks Alexey Volovikov, Pavle Blagojević, Arseniy Akopyan, Peter Landweber, and Vladimir Tikhomirov for
discussions and useful comments.

2. Index of ZZZ2-spaces

Let us recall some basic facts on the homological index of Z2-actions (Z2 is a group with two elements); the reader may
consult the book [8] for more details. Denote G = Z2, if we consider Z2 as a transformation group. The algebra H∗(BG;F2)

is a polynomial ring F2[c] with the one-dimensional generator c.
In this section we consider the cohomology with F2 coefficients, the coefficients being omitted from the notation. Define

the equivariant cohomology for a space X with continuous action of G (a G-space) by

H∗
G(X) = H∗(X ×G EG) = H∗((X × EG)/G

)
,

thus we have H∗
G(pt) = H∗(BG) for a one-point space with trivial action of G and H∗

G(X) = H∗(X/G) for a free G-space. For
G = Z2 we may take EG to be the infinite-dimensional sphere S∞ with the antipodal action of G , and BG = RP∞ . For any
G-space X the natural map X → pt induces the natural cohomology map

π∗
X : H∗

G(pt) = H∗(BG) → H∗
G(X).

Definition 2.1. For a G-space X define indG X to be the maximal n such that π∗
X (cn) 	= 0 ∈ H∗

G(X).

Note that if X has a G-fixed point then the map π∗
X is necessarily injective and the index is infinite. The following

property of index is obvious by definition:

Lemma 2.2. If X is a topological disjoint union of G-invariant subspaces X1, . . . , Xk, then

indG X = max
i

indG Xi .

The next property is the generalized Borsuk–Ulam theorem (see [8] for example):

Lemma 2.3. Let indG X � n and let V be an n-dimensional vector space with antipodal G-action. Then for every continuous G-
equivariant map f : X → V

f −1(0) 	= ∅.
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The following lemma is proved in [20], see also [6]:

Lemma 2.4. Let X be a compact metric G-space, indG X � (d + 1)k, and let W be a d-dimensional metric space with trivial G-action.
Then for every continuous G-equivariant map f : X → W there exists x ∈ W such that

indG f −1(x) � k.

In this lemma it is important to use the Čech cohomology, which is assumed in the sequel.

3. Proof of Theorem 1.1

Consider a continuous map f : �m → W . Let us map the m-dimensional sphere Sm to �m by the formula:

g(x1, . . . , xm+1) = (
x2

1, . . . , x2
m+1

)
.

Apply Lemma 2.4 to the composition f ◦ g , which is possible because g(x) = g(−x). We obtain a point x ∈ W such that for
Z = ( f ◦ g)−1(x) we have indG Z � r − 1.

We are going to show that x is the required intersection point. Assume the contrary: a face F ⊆ �m of dimension d(r −1)

does not intersect g(Z). Without loss of generality, let g−1(F ) be defined by the equations

x1 = · · · = xr−1 = 0.

Note that the r − 1 coordinates x1, . . . , xr−1 give a continuous G-equivariant map h : Sm → R
r−1, where G acts on R

r−1

antipodally. By Lemma 2.3 the intersection g−1(F ) ∩ Z = h−1(0) ∩ Z = h|−1
Z (0) should be nonempty. The proof is complete.

4. Remark on the case W = RRR
d of Theorem 1.1

Recall the known fact: The case W = R
d of Theorem 1.1 follows from the topological Tverberg theorem (only the case of

prime r is needed). For the reader’s convenience we present a proof here (see also [7, Section 6]).
Consider a simplicial map ϕ : �M → �m , where R = k(r − 1) + 1 is a prime (for some k this is so by the Dirichlet

theorem on arithmetic progressions), M = (R − 1)(d + 1) + k − 1, and there are k vertices of �M in the preimage of every
vertex of �m . For �M the topological Tverberg theorem holds (since M � (R − 1)(d + 1)), and there exist R disjoint faces
F̃1, . . . , F̃ R of �M such that

R⋂

i=1

f
(
ϕ( F̃ i)

) � x.

Consider a face F ⊆ �m of dimension d(r − 1) and assume that ϕ−1(F ) does not contain any F̃ i , then M + 1 must be at
least the number of vertices in ϕ−1(F ) plus R , that is

M + 1 � k(r − 1)d + k + R = (R − 1)d + k + R = M + 2,

which is a contradiction. So ϕ−1(F ) contains some F̃ i , and f (F ) � x.

5. Tverberg type theorems for maps to finite-dimensional spaces

It is natural to ask whether the corresponding version of the Tverberg theorem holds for maps from �m to a d-
dimensional metric space, at least for r a prime power. In fact, the number m = (d + 1)(r − 1) must be increased, as
claimed by the following:

Theorem 5.1. Let m = (d + 1)r − 2. Then there exists a d-dimensional polyhedron W and a continuous map f : �m → W with the
following property. For any pairwise disjoint faces F1, . . . , Fr ⊆ �m there exists i such that

f (Fi) ∩ f (F j) = ∅
for all j 	= i.

This theorem also shows that our approach used to prove Theorem 1.1 cannot be applied to the topological Tverberg
theorem. Indeed, this proof does not distinguish between R

d and any metric d-dimensional space, but the topological
Tverberg theorem does not hold for maps to d-dimensional metric spaces.

Proof of Theorem 5.1. The construction in the proof is taken from [19]. Let �m be a regular simplex in R
m , centered at

the origin. Denote by �m its (d − 1)-skeleton, and W = C�m the cone (geometrically centered at the origin) on this
d−1 d−1
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skeleton. Define the PL-map (of the barycentric subdivision to the barycentric subdivision) f : �m
d−1 → W as follows. For

every face F ⊆ �m of dimension � d − 1 its barycenter is mapped to itself, for every face F ⊆ �m of dimension � d its
barycenter is mapped to the origin.

Let F1, . . . , Fr ⊆ �n−1 be a set of r pairwise disjoint faces. For some i the dimension dim Fi is less than d − 1 by the
pigeonhole principle. For such a face we have f (Fi) = Fi , and

f (Fi) ∩ f (F j) ⊆ Fi ∩ f (F j) ⊆ ∂�m.

Since f (F j) ∩ ∂�m ⊆ F j we obtain

f (Fi) ∩ f (F j) ⊆ Fi ∩ F j = ∅. �
The following positive result for larger m is a direct consequence of the reasoning in [18]:

Theorem 5.2. Let m = (d + 1)r − 1 and let r be a prime power. Suppose f : �m → W is a continuous map to a d-dimensional metric
space W . Then there exist r disjoint faces F1, . . . , Fr ⊂ �m such that

r⋂

i=1

f (Fi) 	= ∅.

Proof. Without loss of generality we may assume W to be a finite d-dimensional polyhedron. Assume the contrary and
denote �m by K for brevity. Then there exists a map

f̃ : K ∗r
�(2) → W ∗r

�(r)

from the r-fold pairwise deleted join K ∗r
�(2) in the simplicial sense to the r-fold r-wise deleted join W ∗r

�(r) in the topological
sense (see the definitions of the deleted joins in [8]). Following [16], put r = pα and consider the group G = (Zp)α and let
G act on the factors of the deleted join transitively. The rest of the reasoning is based on the following facts from [17,18]:

Let X be a connected G-space. Consider the Leray–Serre spectral sequence with

E∗,∗
2 = H∗(BG; H∗(X;Fp)

)

converging to H∗
G(X;Fp). Here G may act on H∗(X;Fp) so the cohomology H∗(BG; ·) may be with twisted coefficients.

Definition 5.3. Denote by iG(X) the minimum r such that the differential dr of this spectral sequence has nontrivial image
in the bottom row.

The index iG has the following properties, if G is a p-torus G = (Zp)α :

(1) (Monotonicity) If there is a G-map f : X → Y , then iG(X) � iG(Y ). If in addition iG(X) = iG(Y ) = n + 1 then the map
f ∗ : Hn(Y ;Fp) → Hn(X;Fp) is nontrivial.

(2) (Dimension upper bound) iG(X) � hdimFp X + 1.
(3) (Cohomology lower bound) If X is connected and acyclic over Fp in degrees � N − 1, then iG(X) � N + 1.

Now note that from the cohomology lower bound it follows that iG(K ∗r
�(2)) � m + 1, from the dimension upper bound it

follows that iG(W ∗r
�(r)) � m + 1, and from (1) the map

f̃ ∗ : Hm(
W ∗r

�(r);Fp
) → Hm(

K ∗r
�(2);Fp

)

must be nontrivial. From the cohomology exact sequence of a pair it follows that the natural map

g∗ : Hm(
W ∗r;Fp

) → Hm(
W ∗r

�(r);Fp
)

is surjective because Hm+1(W ∗r, W ∗r
�(r);Fp) = 0 by dimensional considerations. Now it follows that the map

(g ◦ f̃ )∗ : Hm(
W ∗r;Fp

) → Hm(
K ∗r

�(2);Fp
)

is nontrivial. But the map g ◦ f̃ is a composition of the natural inclusion

h : K ∗r
�(2) → K ∗r

with the map

f ∗r : K ∗r → W ∗r .

The latter map has contractible domain, and therefore induces a zero map on cohomology Hm(·;Fp). We obtain a contra-
diction. �
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6. The case r = 2 of Theorem 1.1 and the Alexandrov width

Let us give a definition, generalizing the definition in [14]. The reader may also consult the book [10] in English. Through-
out this section we use the notation

δA = {δa: a ∈ A} and A + B = {a + b: a ∈ A, b ∈ B}.

Definition 6.1. Let K ⊆ R
n be a convex body. Denote by bk(K ) the maximal number such that for any map K → Y to a

k-dimensional polyhedron there exists y ∈ Y such that for any δ < bk(K ) the set f −1(y) cannot be covered by a translate
of δK .

We use k-dimensional polyhedra Y following [14], but we may also use k-dimensional metric spaces as above.
The definition of the Alexandrov width (in [14]) is a bit different: A subset X of some normed space E is considered and

ak(X) denotes the maximal number such that for any map X → Y to a k-dimensional polyhedron there exists y ∈ Y such
that for any δ < ak(X) the set f −1(y) cannot be covered by a ball (in the given norm of E) of radius δ.

In [14, Theorem 1, p. 268] the results of K. Sitnikov and A.M. Abramov [1,13] are cited, which assert that ak(X) = 1
for any k � n − 1, if X is the unit ball of a norm in R

n . In terms of Definition 6.1 this means that bk(K ) = 1 for centrally
symmetric convex bodies in R

n if k � n − 1 and obviously bk(K ) = 0 for k � n.
Note that Theorem 1.1 for r = 2 actually asserts that bk(�

n) = 1 if k � n − 1. Indeed, if f −1(y) intersects all facets of �n

then it cannot be contained in a smaller homothetic copy of �n . Now it makes sense to extend the result of K. Sitnikov and
A.M. Abramov to (possibly not symmetric) convex bodies:

Theorem 6.2. If K is a convex body in R
n and k � n − 1, then bk(K ) = 1.

Proof. The proof in [14, Proposition 1, pp. 84–85] actually works in this case. Assume the contrary: the map f : K → Y is
such that every preimage f −1(y) can be covered by a smaller copy of K and dim Y � n − 1. For a fine enough finite closed
covering of Y its pullback covering U of K has the following properties: the multiplicity of U is at most n and any X ∈ U
can be covered by a translate of δK for some fixed 0 < δ < 1.

Assume 0 ∈ int K and call the point t the center of a translate δK + t . Assign to any X ∈ U the center t X of δK + t X ⊆ X .
Using the partition of unity subordinate to U we map K to the nerve of U , and then map this nerve to at most (n − 1)-
dimensional subcomplex of R

n by assigning t X to X . Finally we obtain a continuous map ϕ : K → R
n such that for any

x ∈ K we have x ∈ ϕ(x) + δK and the image ϕ(K ) has dimension � n − 1.
Under the above condition the image ϕ(∂ K ) cannot intersect εK if ε < 1 − δ, because εK + δK is in the interior of K .

If we compose ϕ|∂ K with the central projection of K \ {0} onto ∂ K , we obtain a map homotopic to the identity map of ∂ K .
Therefore the map of pairs ϕ : (K , ∂ K ) → (K , K \εK ) has degree 1, and ϕ(K ) ⊇ εK . Therefore ϕ(K ) is n-dimensional, which
is a contradiction. �
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