A topological central point theorem

Roman N. Karasev ${ }^{\text {a,b,*, }} 1$
a Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny 141700, Russia
${ }^{\mathrm{b}}$ Laboratory of Discrete and Computational Geometry, Yaroslavl' State University, Sovetskaya st. 14, Yaroslavl' 150000, Russia

A R T I CLE I N F O

Article history:

Received 17 May 2011
Received in revised form 29 November 2011
Accepted 4 December 2011

MSC:

52A35
52C35
55M35

Keywords:

Tverberg's theorem
Central point theorem

Abstract

In this paper a generalized topological central point theorem is proved for maps of a simplex to finite-dimensional metric spaces. Similar generalizations of the Tverberg theorem are considered.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let us state the discrete version of the Neumann-Rado theorem [9,11,5] (see also the reviews [4] and [3]):
Theorem (The discrete central point theorem). Suppose $X \subset \mathbb{R}^{d}$ is a finite set with $|X|=(d+1)(r-1)+1$. Then there exists $x \in \mathbb{R}^{d}$ such that for any halfspace $H \ni x$

$$
|H \cap X| \geqslant r
$$

In this theorem a halfspace is a set $\left\{x \in \mathbb{R}^{d}: \lambda(x) \geqslant 0\right\}$ for a (possibly not homogeneous) linear function $\lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Using the Hahn-Banach theorem [12] we restate the conclusion of this theorem as follows: the point x is contained in the convex hull of any subset $F \subseteq X$ of at least $d(r-1)+1$ points.

When stated in terms of convex hulls, the central point theorem has an important and nontrivial generalization proved in [15]:

Theorem (Tverberg's theorem). Consider a finite set $X \in \mathbb{R}^{d}$ with $|X|=(d+1)(r-1)+1$. Then X can be partitioned into r subsets X_{1}, \ldots, X_{r} so that

$$
\bigcap_{i=1}^{r} \operatorname{conv} X_{i} \neq \emptyset .
$$

[^0]0166-8641/\$ - see front matter © 2011 Elsevier B.V. All rights reserved.

In $[2,16]$ a topological generalization of the Tverberg theorem was established. Instead of taking a finite point set in \mathbb{R}^{d} and the convex hulls of its subsets, we take the continuous image of a simplex in \mathbb{R}^{d} and the images of its faces (faces of the simplex viewed as a simplicial complex):

Theorem (The topological Tverberg theorem). Let $m=(d+1)(r-1)$, r be a prime power, and let Δ^{m} be the m-dimensional simplex. Suppose $f: \Delta^{m} \rightarrow Y$ is a continuous map to d-dimensional manifold Y. Then there exist r disjoint faces $F_{1}, \ldots, F_{r} \subset \Delta^{m}$ such that

$$
\bigcap_{i=1}^{r} f\left(F_{i}\right) \neq \emptyset .
$$

It is still unknown whether such a theorem holds for r not equal to a prime power. But if we return to the central point theorem, we see that the following topological version holds without restrictions on r. Moreover, the target space can be any d-dimensional metric space, not necessarily a manifold. So the main result of this paper is:

Theorem 1.1. Let $m=(d+1)(r-1)$, let Δ^{m} be the m-dimensional simplex, and let W be a d-dimensional metric space. Suppose $f: \Delta^{m} \rightarrow W$ is a continuous map. Then

$$
f(F) \neq \emptyset
$$

where the intersection is taken over all faces of dimension $d(r-1)$.
Note that for $W=\mathbb{R}^{d}$ this theorem can also be deduced from the topological Tverberg theorem (see Section 4 for details). The goal of this paper is to give another proof of Theorem 1.1, valid for any d-dimensional W. In Section 5 we show that a similar generalization of the Tverberg theorem for maps into finite-dimensional spaces essentially needs larger values of m.

The author thanks Alexey Volovikov, Pavle Blagojević, Arseniy Akopyan, Peter Landweber, and Vladimir Tikhomirov for discussions and useful comments.

2. Index of \mathbb{Z}_{2}-spaces

Let us recall some basic facts on the homological index of \mathbb{Z}_{2}-actions (\mathbb{Z}_{2} is a group with two elements); the reader may consult the book [8] for more details. Denote $G=\mathbb{Z}_{2}$, if we consider \mathbb{Z}_{2} as a transformation group. The algebra $H^{*}\left(B G ; \mathbb{F}_{2}\right)$ is a polynomial ring $\mathbb{F}_{2}[c]$ with the one-dimensional generator c.

In this section we consider the cohomology with \mathbb{F}_{2} coefficients, the coefficients being omitted from the notation. Define the equivariant cohomology for a space X with continuous action of G (a G-space) by

$$
H_{G}^{*}(X)=H^{*}\left(X \times_{G} E G\right)=H^{*}((X \times E G) / G)
$$

thus we have $H_{G}^{*}(p t)=H^{*}(B G)$ for a one-point space with trivial action of G and $H_{G}^{*}(X)=H^{*}(X / G)$ for a free G-space. For $G=\mathbb{Z}_{2}$ we may take $E G$ to be the infinite-dimensional sphere S^{∞} with the antipodal action of G, and $B G=\mathbb{R} P^{\infty}$. For any G-space X the natural map $X \rightarrow$ pt induces the natural cohomology map

$$
\pi_{X}^{*}: H_{G}^{*}(\mathrm{pt})=H^{*}(B G) \rightarrow H_{G}^{*}(X)
$$

Definition 2.1. For a G-space X define $\operatorname{ind}_{G} X$ to be the maximal n such that $\pi_{X}^{*}\left(c^{n}\right) \neq 0 \in H_{G}^{*}(X)$.
Note that if X has a G-fixed point then the map π_{X}^{*} is necessarily injective and the index is infinite. The following property of index is obvious by definition:

Lemma 2.2. If X is a topological disjoint union of G-invariant subspaces X_{1}, \ldots, X_{k}, then

$$
\operatorname{ind}_{G} X=\operatorname{maxind}_{i} X_{i}
$$

The next property is the generalized Borsuk-Ulam theorem (see [8] for example):
Lemma 2.3. Let $\operatorname{ind}_{G} X \geqslant n$ and let V be an n-dimensional vector space with antipodal G-action. Then for every continuous G equivariant map $f: X \rightarrow V$

$$
f^{-1}(0) \neq \emptyset
$$

The following lemma is proved in [20], see also [6]:
Lemma 2.4. Let X be a compact metric G-space, $\operatorname{ind}_{G} X \geqslant(d+1) k$, and let W be a d-dimensional metric space with trivial G-action. Then for every continuous G-equivariant map $f: X \rightarrow W$ there exists $x \in W$ such that

$$
\operatorname{ind}_{G} f^{-1}(x) \geqslant k
$$

In this lemma it is important to use the Čech cohomology, which is assumed in the sequel.

3. Proof of Theorem 1.1

Consider a continuous map $f: \Delta^{m} \rightarrow W$. Let us map the m-dimensional sphere S^{m} to Δ^{m} by the formula:

$$
g\left(x_{1}, \ldots, x_{m+1}\right)=\left(x_{1}^{2}, \ldots, x_{m+1}^{2}\right)
$$

Apply Lemma 2.4 to the composition $f \circ g$, which is possible because $g(x)=g(-x)$. We obtain a point $x \in W$ such that for $Z=(f \circ g)^{-1}(x)$ we have $\operatorname{ind}_{G} Z \geqslant r-1$.

We are going to show that x is the required intersection point. Assume the contrary: a face $F \subseteq \Delta^{m}$ of dimension $d(r-1)$ does not intersect $g(Z)$. Without loss of generality, let $g^{-1}(F)$ be defined by the equations

$$
x_{1}=\cdots=x_{r-1}=0
$$

Note that the $r-1$ coordinates x_{1}, \ldots, x_{r-1} give a continuous G-equivariant map $h: S^{m} \rightarrow \mathbb{R}^{r-1}$, where G acts on \mathbb{R}^{r-1} antipodally. By Lemma 2.3 the intersection $g^{-1}(F) \cap Z=h^{-1}(0) \cap Z=\left.h\right|_{Z} ^{-1}(0)$ should be nonempty. The proof is complete.

4. Remark on the case $W=\mathbb{R}^{d}$ of Theorem 1.1

Recall the known fact: The case $W=\mathbb{R}^{d}$ of Theorem 1.1 follows from the topological Tverberg theorem (only the case of prime r is needed). For the reader's convenience we present a proof here (see also [7, Section 6]).

Consider a simplicial map $\varphi: \Delta^{M} \rightarrow \Delta^{m}$, where $R=k(r-1)+1$ is a prime (for some k this is so by the Dirichlet theorem on arithmetic progressions), $M=(R-1)(d+1)+k-1$, and there are k vertices of Δ^{M} in the preimage of every vertex of Δ^{m}. For Δ^{M} the topological Tverberg theorem holds (since $M \geqslant(R-1)(d+1)$), and there exist R disjoint faces $\tilde{F}_{1}, \ldots, \tilde{F}_{R}$ of Δ^{M} such that

$$
\bigcap_{i=1}^{R} f\left(\varphi\left(\tilde{F}_{i}\right)\right) \ni x
$$

Consider a face $F \subseteq \Delta^{m}$ of dimension $d(r-1)$ and assume that $\varphi^{-1}(F)$ does not contain any \tilde{F}_{i}, then $M+1$ must be at least the number of vertices in $\varphi^{-1}(F)$ plus R, that is

$$
M+1 \geqslant k(r-1) d+k+R=(R-1) d+k+R=M+2
$$

which is a contradiction. So $\varphi^{-1}(F)$ contains some \tilde{F}_{i}, and $f(F) \ni x$.

5. Tverberg type theorems for maps to finite-dimensional spaces

It is natural to ask whether the corresponding version of the Tverberg theorem holds for maps from Δ^{m} to a d dimensional metric space, at least for r a prime power. In fact, the number $m=(d+1)(r-1)$ must be increased, as claimed by the following:

Theorem 5.1. Let $m=(d+1) r-2$. Then there exists a d-dimensional polyhedron W and a continuous map $f: \Delta^{m} \rightarrow W$ with the following property. For any pairwise disjoint faces $F_{1}, \ldots, F_{r} \subseteq \Delta^{m}$ there exists i such that

$$
f\left(F_{i}\right) \cap f\left(F_{j}\right)=\emptyset
$$

for all $j \neq i$.
This theorem also shows that our approach used to prove Theorem 1.1 cannot be applied to the topological Tverberg theorem. Indeed, this proof does not distinguish between \mathbb{R}^{d} and any metric d-dimensional space, but the topological Tverberg theorem does not hold for maps to d-dimensional metric spaces.

Proof of Theorem 5.1. The construction in the proof is taken from [19]. Let Δ^{m} be a regular simplex in \mathbb{R}^{m}, centered at the origin. Denote by Δ_{d-1}^{m} its $(d-1)$-skeleton, and $W=C \Delta_{d-1}^{m}$ the cone (geometrically centered at the origin) on this
skeleton. Define the PL-map (of the barycentric subdivision to the barycentric subdivision) $f: \Delta_{d-1}^{m} \rightarrow W$ as follows. For every face $F \subseteq \Delta^{m}$ of dimension $\leqslant d-1$ its barycenter is mapped to itself, for every face $F \subseteq \Delta^{m}$ of dimension $\geqslant d$ its barycenter is mapped to the origin.

Let $F_{1}, \ldots, F_{r} \subseteq \Delta^{n-1}$ be a set of r pairwise disjoint faces. For some i the dimension $\operatorname{dim} F_{i}$ is less than $d-1$ by the pigeonhole principle. For such a face we have $f\left(F_{i}\right)=F_{i}$, and

$$
f\left(F_{i}\right) \cap f\left(F_{j}\right) \subseteq F_{i} \cap f\left(F_{j}\right) \subseteq \partial \Delta^{m}
$$

Since $f\left(F_{j}\right) \cap \partial \Delta^{m} \subseteq F_{j}$ we obtain

$$
f\left(F_{i}\right) \cap f\left(F_{j}\right) \subseteq F_{i} \cap F_{j}=\emptyset
$$

The following positive result for larger m is a direct consequence of the reasoning in [18]:
Theorem 5.2. Let $m=(d+1) r-1$ and let r be a prime power. Suppose $f: \Delta^{m} \rightarrow W$ is a continuous map to ad-dimensional metric space W. Then there exist r disjoint faces $F_{1}, \ldots, F_{r} \subset \Delta^{m}$ such that

$$
\bigcap_{i=1}^{r} f\left(F_{i}\right) \neq \emptyset .
$$

Proof. Without loss of generality we may assume W to be a finite d-dimensional polyhedron. Assume the contrary and denote Δ^{m} by K for brevity. Then there exists a map

$$
\tilde{f}: K_{\Delta(2)}^{* r} \rightarrow W_{\Delta(r)}^{* r}
$$

from the r-fold pairwise deleted join $K_{\Delta(2)}^{* r}$ in the simplicial sense to the r-fold r-wise deleted join $W_{\Delta(r)}^{* r}$ in the topological sense (see the definitions of the deleted joins in [8]). Following [16], put $r=p^{\alpha}$ and consider the group $G=\left(\mathbb{Z}_{p}\right)^{\alpha}$ and let G act on the factors of the deleted join transitively. The rest of the reasoning is based on the following facts from [17,18]:

Let X be a connected G-space. Consider the Leray-Serre spectral sequence with

$$
E_{2}^{*, *}=H^{*}\left(B G ; H^{*}\left(X ; \mathbb{F}_{p}\right)\right)
$$

converging to $H_{G}^{*}\left(X ; \mathbb{F}_{p}\right)$. Here G may act on $H^{*}\left(X ; \mathbb{F}_{p}\right)$ so the cohomology $H^{*}(B G ; \cdot)$ may be with twisted coefficients.
Definition 5.3. Denote by $i_{G}(X)$ the minimum r such that the differential d_{r} of this spectral sequence has nontrivial image in the bottom row.

The index i_{G} has the following properties, if G is a p-torus $G=\left(\mathbb{Z}_{p}\right)^{\alpha}$:
(1) (Monotonicity) If there is a G-map $f: X \rightarrow Y$, then $i_{G}(X) \leqslant i_{G}(Y)$. If in addition $i_{G}(X)=i_{G}(Y)=n+1$ then the map $f^{*}: H^{n}\left(Y ; \mathbb{F}_{p}\right) \rightarrow H^{n}\left(X ; \mathbb{F}_{p}\right)$ is nontrivial.
(2) (Dimension upper bound) $i_{G}(X) \leqslant \operatorname{hdim}_{\mathbb{F}_{p}} X+1$.
(3) (Cohomology lower bound) If X is connected and acyclic over \mathbb{F}_{p} in degrees $\leqslant N-1$, then $i_{G}(X) \geqslant N+1$.

Now note that from the cohomology lower bound it follows that $i_{G}\left(K_{\Delta(2)}^{* r}\right) \geqslant m+1$, from the dimension upper bound it follows that $i_{G}\left(W_{\Delta(r)}^{* r}\right) \leqslant m+1$, and from (1) the map

$$
\tilde{f}^{*}: H^{m}\left(W_{\Delta(r)}^{* r} ; \mathbb{F}_{p}\right) \rightarrow H^{m}\left(K_{\Delta(2)}^{* r} ; \mathbb{F}_{p}\right)
$$

must be nontrivial. From the cohomology exact sequence of a pair it follows that the natural map

$$
g^{*}: H^{m}\left(W^{* r} ; \mathbb{F}_{p}\right) \rightarrow H^{m}\left(W_{\Delta(r)}^{* r} ; \mathbb{F}_{p}\right)
$$

is surjective because $H^{m+1}\left(W^{* r}, W_{\Delta(r)}^{* r} ; \mathbb{F}_{p}\right)=0$ by dimensional considerations. Now it follows that the map

$$
(g \circ \tilde{f})^{*}: H^{m}\left(W^{* r} ; \mathbb{F}_{p}\right) \rightarrow H^{m}\left(K_{\Delta(2)}^{* r} ; \mathbb{F}_{p}\right)
$$

is nontrivial. But the map $g \circ \tilde{f}$ is a composition of the natural inclusion

$$
h: K_{\Delta(2)}^{* r} \rightarrow K^{* r}
$$

with the map

$$
f^{* r}: K^{* r} \rightarrow W^{* r}
$$

The latter map has contractible domain, and therefore induces a zero map on cohomology $H^{m}\left(\cdot ; \mathbb{F}_{p}\right)$. We obtain a contradiction.

6. The case $\mathbf{r}=\mathbf{2}$ of Theorem 1.1 and the Alexandrov width

Let us give a definition, generalizing the definition in [14]. The reader may also consult the book [10] in English. Throughout this section we use the notation

$$
\delta A=\{\delta a: a \in A\} \quad \text { and } \quad A+B=\{a+b: a \in A, b \in B\} .
$$

Definition 6.1. Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Denote by $b_{k}(K)$ the maximal number such that for any map $K \rightarrow Y$ to a k-dimensional polyhedron there exists $y \in Y$ such that for any $\delta<b_{k}(K)$ the set $f^{-1}(y)$ cannot be covered by a translate of δK.

We use k-dimensional polyhedra Y following [14], but we may also use k-dimensional metric spaces as above.
The definition of the Alexandrov width (in [14]) is a bit different: A subset X of some normed space E is considered and $a_{k}(X)$ denotes the maximal number such that for any map $X \rightarrow Y$ to a k-dimensional polyhedron there exists $y \in Y$ such that for any $\delta<a_{k}(X)$ the set $f^{-1}(y)$ cannot be covered by a ball (in the given norm of E) of radius δ.

In [14, Theorem 1, p. 268] the results of K. Sitnikov and A.M. Abramov [1,13] are cited, which assert that $a_{k}(X)=1$ for any $k \leqslant n-1$, if X is the unit ball of a norm in \mathbb{R}^{n}. In terms of Definition 6.1 this means that $b_{k}(K)=1$ for centrally symmetric convex bodies in \mathbb{R}^{n} if $k \leqslant n-1$ and obviously $b_{k}(K)=0$ for $k \geqslant n$.

Note that Theorem 1.1 for $r=2$ actually asserts that $b_{k}\left(\Delta^{n}\right)=1$ if $k \leqslant n-1$. Indeed, if $f^{-1}(y)$ intersects all facets of Δ^{n} then it cannot be contained in a smaller homothetic copy of Δ^{n}. Now it makes sense to extend the result of K. Sitnikov and A.M. Abramov to (possibly not symmetric) convex bodies:

Theorem 6.2. If K is a convex body in \mathbb{R}^{n} and $k \leqslant n-1$, then $b_{k}(K)=1$.
Proof. The proof in [14, Proposition 1, pp. 84-85] actually works in this case. Assume the contrary: the map $f: K \rightarrow Y$ is such that every preimage $f^{-1}(y)$ can be covered by a smaller copy of K and $\operatorname{dim} Y \leqslant n-1$. For a fine enough finite closed covering of Y its pullback covering \mathcal{U} of K has the following properties: the multiplicity of \mathcal{U} is at most n and any $X \in \mathcal{U}$ can be covered by a translate of δK for some fixed $0<\delta<1$.

Assume $0 \in \operatorname{int} K$ and call the point t the center of a translate $\delta K+t$. Assign to any $X \in \mathcal{U}$ the center t_{X} of $\delta K+t_{X} \subseteq X$. Using the partition of unity subordinate to \mathcal{U} we map K to the nerve of \mathcal{U}, and then map this nerve to at most ($n-1$)dimensional subcomplex of \mathbb{R}^{n} by assigning t_{X} to X. Finally we obtain a continuous map $\varphi: K \rightarrow \mathbb{R}^{n}$ such that for any $x \in K$ we have $x \in \varphi(x)+\delta K$ and the image $\varphi(K)$ has dimension $\leqslant n-1$.

Under the above condition the image $\varphi(\partial K)$ cannot intersect εK if $\varepsilon<1-\delta$, because $\varepsilon K+\delta K$ is in the interior of K. If we compose $\left.\varphi\right|_{\partial K}$ with the central projection of $K \backslash\{0\}$ onto ∂K, we obtain a map homotopic to the identity map of ∂K. Therefore the map of pairs $\varphi:(K, \partial K) \rightarrow(K, K \backslash \varepsilon K)$ has degree 1 , and $\varphi(K) \supseteq \varepsilon K$. Therefore $\varphi(K)$ is n-dimensional, which is a contradiction.

References

[1] A.M. Abramov, Sets with identical Aleksandrov diameters, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. 27 (6) (1972) 15-17 (in Russian); translated in Moscow Univ. Math. Bull. 27 (6) (1972) 80-81.
[2] I. Bárány, S.B. Shlosman, A. Szűcs, On a topological generalization of a theorem of Tverberg, J. Lond. Math. Soc. 23 (1981) 158-164.
[3] L. Danzer, B. Grünbaum, V. Klee, Helly's theorem and its relatives, in: Convexity, in: Proc. Symp. Pure Math., vol. VII, Amer. Math. Soc., Providence, RI, 1963, pp. 101-179.
[4] J. Eckhoff, Helly, Radon, and Carathéodory type theorems, in: P.M. Gruber, J.M. Willis (Eds.), Handbook of Convex Geometry, North-Holland, Amsterdam, 1993, pp. 389-448.
[5] B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960) 1257-1261.
[6] R.N. Karasev, The genus and the Lyusternik-Schnirelmann category of preimages, Model. Anal. Inform. Sist. 14 (4) (2007) 66-70 (in Russian); translated in arXiv:1006.3144, 2010.
[7] R.N. Karasev, Tverberg-type theorems for intersecting by rays, Discrete Comput. Geom. 45 (2) (2011) 340-347.
[8] J. Matoušek, Using the Borsuk-Ulam Theorem, Springer-Verlag, Berlin, Heidelberg, 2003.
[9] B.H. Neumann, On an invariant of plane regions and mass distributions, J. Lond. Math. Soc. 20 (1945) 226-237.
[10] A. Pinkus, N-Widths in Approximation Theory, Springer-Verlag, Berlin, New York, 1985.
[11] R. Rado, A theorem on general measure, J. Lond. Math. Soc. 21 (1946) 291-300.
[12] W. Rudin, Functional Analysis, second ed., McGraw-Hill, 1991.
[13] K. Sitnikov, Über die Rundheit der Kugel, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ila (1958) 213-215.
[14] V.M. Tikhomirov, Some Questions of the Approximation Theory, MSU, Moscow, 1976 (in Russian).
[15] H. Tverberg, A generalization of Radon's theorem, J. Lond. Math. Soc. 41 (1966) 123-128.
[16] A.Yu. Volovikov, On a topological generalization of the Tverberg theorem, Math. Notes 59 (3) (1996) 324-326.
[17] A.Yu. Volovikov, On the index of G-spaces, Mat. Sbornik 191 (9) (2000) 3-22 (in Russian); translated in Sbornik Math. 191 (9) (2000) $1259-1277$.
[18] A.Yu. Volovikov, Coincidence points of functions from \mathbb{Z}_{p}^{k}-spaces to CW-complexes, Russian Math. Surveys 57 (1) (2002) 170-172.
[19] A.Yu. Volovikov, E.V. Shchepin, Antipodes embeddings, Sb. Math. 196 (1) (2005) 1-28 (in Russian); translations from Mat. Sb. 196 (1) (2005) 3-32.
[20] C.-T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, II, Ann. of Math. (2) 62 (2) (1955) 271-283.

[^0]: * Correspondence to: Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny 141700, Russia. E-mail address: r_n_karasev@mail.ru.
 1 Supported by the Dynasty Foundation, the President's of Russian Federation grant MK-113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-00139, the Federal Program "Scientific and scientific-pedagogical staff of innovative Russia" 2009-2013, and the Russian government project 11.G34.31.0053.

