1,262 research outputs found

    Non-axisymmetric oscillations of stratified coronal magnetic loops with elliptical cross-sections

    Full text link
    We study non-axisymmetric oscillations of a straight magnetic tube with an elliptic cross-section and density varying along the tube. The governing equations for kink and fluting modes in the thin tube approximation are derived. We found that there are two kink modes, polarised along the large and small axes of the elliptic cross-section. We have shown that the ratio of frequencies of the first overtone and fundamental harmonic is the same for both kink modes and independent of the ratio of the ellipse axes. On the basis of this result we concluded that the estimates of the atmospheric scale height obtained using simultaneous observations of the fundamental harmonic and first overtone of the coronal loop kink oscillations are independent of the ellipticity of the loop cross-section

    Torsional Alfvén waves: magneto-seismology in static and dynamic coronal plasmas

    Get PDF
    Aims: We study the properties of torsional Alfvén waves in coronal loops so that they may be exploited for coronal seismological applications. Methods: The governing equation is obtained for standing torsional Alfvén waves of a dynamic, gravitationally stratified plasma. The footpoints are assumed to obey line-tying conditions necessary for standing oscillations. Solutions are found in a number of different but typical scenarios to demonstrate the possibilities for both temporal and spatial magneto-seismology exploitation of waveguides with the standing torsional Alfvén oscillations. Results: It is found that the frequency of the standing Alfvén oscillation increases as the stratification of the plasma increases. The ratio of the periods of the fundamental modeand the first overtone is also found to change as the stratification of the plasma increases. Further, the eigenfunctions of the higher overtones of the standing oscillations are found to experience a shift of their anti-nodes. The influence of a dynamic plasma on the amplitudes of the mode is also investigated. The amplitude of the torsional Alfvén mode is found to increase as the plasma within the coronal loop experiences cooling

    Nonlinear theory of resonant slow waves in anisotropic and dispersive plasmas

    Get PDF
    The solar corona is a typical example of a plasma with strongly anisotropic transport processes. The main dissipative mechanisms in the solar corona acting on slow magnetoacoustic waves are the anisotropic thermal conductivity and viscosity [Ballai et al., Phys. Plasmas 5, 252 (1998)] developed the nonlinear theory of driven slow resonant waves in such a regime. In the present paper the nonlinear behavior of driven magnetohydrodynamic waves in the slow dissipative layer in plasmas with strongly anisotropic viscosity and thermal conductivity is expanded by considering dispersive effects due to Hall currents. The nonlinear governing equation describing the dynamics of nonlinear resonant slow waves is supplemented by a term which describes nonlinear dispersion and is of the same order of magnitude as nonlinearity and dissipation. The connection formulas are found to be similar to their nondispersive counterparts

    Absolute and convective instabilities of parallel propagating circularly polarized Alfvén waves: numerical results

    Get PDF
    Context.The stability of parallel propagating circularly polarized Alfvén waves (pump waves) has been studied for more than four decades with the use of normal mode analysis. It is well known that the normal mode analysis does not answer the question if a pump wave looks stable or unstable in a particular reference frame. To answer this question it is necessary to find out if the instability is absolute or convective in this reference frame. Aims.We extend our previous study of absolute and convective instabilities of pump waves with small amplitude to pump waves with arbitrary amplitude. Methods.To study the absolute and convective instabilities of pump waves with arbitrary amplitude we numerically implement Brigg's method. Results.We show that the wave is absolutely unstable in a reference frame moving with the velocity U with respect to the rest plasma if U satisfies the inequality Ul Ur) we study the signalling problem. We show that spatially amplifying waves exist only when the signalling frequency is in two symmetric frequency bands, and calculate the dependences of the boundaries of these bands on U for different values of a . We also obtain the dependences of the maximum spatial amplification rate on U for different values of a . The implication of these results on the interpretation of observational data from space missions is discussed. In particular, it is shown that circularly polarized Alfvén waves propagating in the solar wind are convectively unstable in a reference frame of any realistic spacecraft

    Nonlinear effects in resonant layers in solar and space plasmas

    Full text link
    The present paper reviews recent advances in the theory of nonlinear driven magnetohydrodynamic (MHD) waves in slow and Alfven resonant layers. Simple estimations show that in the vicinity of resonant positions the amplitude of variables can grow over the threshold where linear descriptions are valid. Using the method of matched asymptotic expansions, governing equations of dynamics inside the dissipative layer and jump conditions across the dissipative layers are derived. These relations are essential when studying the efficiency of resonant absorption. Nonlinearity in dissipative layers can generate new effects, such as mean flows, which can have serious implications on the stability and efficiency of the resonance

    Absolute and convective instabilities of parallel propagating circularly polarized Alfven waves: Beat instability

    Get PDF
    Ruderman and Simpson [Phys. Plasmas 11, 4178 (2004)] studied the absolute and convective decay instabilities of parallel propagating circularly polarized Alfven waves in plasmas where the sound speed c(S) is smaller than the Alfven speed upsilon(A). We extend their analysis for the beat instability which occurs in plasmas with c(S)>upsilon(A). We assume that the dimensionless amplitude of the circularly polarized Alfven wave (pump wave), a, is small. Applying Briggs' method we study the problem analytically using expansions in power series with respect to a. It is shown that the pump wave is absolutely unstable in a reference frame moving with the velocity U with respect to the rest plasma if U-lU-r, the instability is convective. The signaling problem is studied in a reference frame where the pump wave is convectively unstable. It is shown that the spatially amplifying waves exist only when the signaling frequency is in two narrow symmetric frequency bands with the widths of the order of a(3). These results enable us to extend for the case when c(S)>upsilon(A) the conclusions, previously made for the case when c(S)<upsilon(A), that circularly polarized Alfven waves propagating in the solar wind are convectively unstable in a reference frame of any spacecraft moving with the velocity not exceeding a few tens of km/s in the solar reference frame. The characteristic scale of spatial amplification for these waves exceeds 1 a.u

    Kink oscillations of cooling coronal loops with variable cross-section

    Get PDF
    We study kink waves and oscillations in a thin expanding magnetic tube in the presence of flow. The tube consists of a core region and a thin transitional region at the tube boundary. In this region the plasma density monotonically decreases from its value in the core region to the value outside the tube. Both the plasma density and velocity of background flow vary along the tube and in time. Using the multiscale expansions we derive the system of two equations describing the kink oscillations. When there is no transitional layer the oscillations are described by the first of these two equations. We use this equation to study the effect of plasma density variation with time on kink oscillations of an expanding tube with a sharp boundary. We assume that the characteristic time of the density variation is much greater than the characteristic time of kink oscillations. Then we use the Wentzel-Kramer-Brillouin (WKB) method to derive the expression for the adiabatic invariant, which is the quantity that is conserved when the plasma density varies. The general theoretical results are applied to the kink oscillations of coronal magnetic loops. We consider an expanding loop with the half-circle shape and assume that the plasma temperature inside a loop decays exponentially with time. We numerically calculated the dependences of the fundamental mode frequency, the ratio of frequencies of the first overtone and fundamental mode, and the oscillation amplitude on time. We obtained that the oscillation frequency and amplitude increase and the frequency ratio decreases due to cooling. The amplitude increase is stronger for loops with a greater expansion factor. This effect is also more pronounced for higher loops. However, it is fairly moderate even for loops that are quite high

    Variational Monte Carlo Study of the Kondo Necklace Model with Geometrical Frustration

    Full text link
    We investigate the ground state of the Kondo necklace model on geometrically-frustrated lattices by the variational Monte Carlo simulation. To explore the possibility of a partially-ordered phase, we employ an extension of the Yosida-type wave function as a variational state, which can describe a coexistence of spin-singlet formation due to the Kondo coupling and magnetic ordering by the Ruderman-Kittel-Kasuya-Yosida interaction. We show the benchmark of the numerical simulation to demonstrate the high precision brought by the optimization of a large number of variational parameters. We discuss the ground-state phase diagram for the model on the kagome lattice in comparison with that for the triangular-lattice case.Comment: 3 pages, proceedings for ICHE201
    corecore