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PHYSICS OF PLASMASI2, 062103(2005

Absolute and convective instabilities of parallel propagating circularly
polarized Alfvén waves: Beat instability

D. Simpson and M. S. Ruderman
Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield,
S3 7RH, United Kingdom

(Received 25 January 2005; accepted 30 March 2005; published online 26 May 2005

Ruderman and SimpsdRhys. Plasmag1, 4178(2004 ] studied the absolute and convective decay
instabilities of parallel propagating circularly polarized Alfvén waves in plasmas where the sound
speedcg is smaller than the Alfvén speag. We extend their analysis for the beat instability which
occurs in plasmas witlts>v,. We assume that the dimensionless amplitude of the circularly
polarized Alfvén wavegpump wave, a, is small. Applying Briggs’ method we study the problem
analytically using expansions in power series with respeet 1bis shown that the pump wave is
absolutely unstable in a reference frame moving with the veldgityith respect to the rest plasma

if U <U<U,, whereU;=-u4+0O(a) andU,=uyy+O(a). WhenU < U, or U>U,, the instability is
convective. The signaling problem is studied in a reference frame where the pump wave is
convectively unstable. It is shown that the spatially amplifying waves exist only when the signaling
frequency is in two narrow symmetric frequency bands with the widths of the ordet. dhese
results enable us to extend for the case wbgn v, the conclusions, previously made for the case
whencs<wy, that circularly polarized Alfvén waves propagating in the solar wind are convectively
unstable in a reference frame of any spacecraft moving with the velocity not exceeding a few tens
of km/s in the solar reference frame. The characteristic scale of spatial amplification for these waves
exceeds 1 a.u. @005 American Ingtitute of Physics. [DOI: 10.1063/1.19194Q7

I. INTRODUCTION the nonlinear evolution of circularly polarized Alfvén waves
both in homogeneoﬁsand stratified plasmas using a one-

. . . . . dimensional numerical code, and applied their results to the
ing Alfvén wave is an exact solution of the nonlinear mag-_ - eleration of the solar wind. Del Zaneaal &° and Del

netohydrodynamidMHD) equations. Since the 1960s this 0 . .
solution has been known to be unstable with respect to harz_anna and Velf developed a three-dimensional MHD code

monic perturbations in the density and magnetic fiélcir- to study the stat_)ility ar_1d nonli_near evolution of Alfvé.n
cularly polarized Alfvén waves are commonly observed ipvaves. They applied their numerical results to the evolution

the solar wind and are thought to exist in other astrophysicaii:f A!fve_n wave slphecltra mh thehsolmi;lmllllnd, Znﬂ tc(; p_Iasma
plasmas. Their stability has attracted ample attention o eating in coronal holes. Shevche .~ used the deriva-

plasma physicists in an attempt to explain observed phenonfivé nonlinear Schrédinge(ONLS) equation to study the
ena. Galeev and Oraevskivere the first to study this prob- Parametric decay instability of Alfvén eg\_clljets propagating in
lem. Their analysis was based on the ideal MHD equationéhelsoppos'de directions. Hertzbeegal. " and Crameret
and they assumed that the pump Alfvén wave amplitude andl- ,extended the Ilngar theory of parametric instabilities of
the plasmag were small parameters. They obtained the reAlfvén waves to multicomponent and dusty plasmas. Mat-
sult that the pump wave can decay into a forward propagatSUk'yo and Had¥ studied the parametric instabilities of cir-
ing sound wave and a backward propagating Alfvén wavecularly polarized Alfvén waves in a relativistic electron-
Derby’ and Goldsteif extended the work of Galeev and Positron plasma.
Oraevskii for arbitrary pump-wave amplitude and plasgha Ruderman and Simpsbthhave recently addressed the
They discovered that the decay products were no longer noRroblem of whether an unstable Alfvén wave appears to give
mal modes of the plasma and that a forward propagatingise to growing modes in a fixed reference frame. This is an
transverse wave is also involved in the process. In the folimportant problem from the point of view of observations, as
lowing studies the dispersive and kinetic effects as well ag system with unstable modes will only appear unstable to an
the effects related to the oblique propagation of perturbationgbserver if the instability grows in time in the observer’s
were investigatedfor references see, e.g., Ruderman andeéeference frame. This occurs only when the instability is ab-
Simpsor). solute. Normal-mode analysis is not enough to study this
Although the stability of circularly polarized Alfvén problem. Ruderman and Simpgbmised the method formu-
waves has been studied for more than four decades, it stilated by Briggd® and Bers® to study the absolute and con-
remains among the hot topics in plasma physics, which igective natures of the instability. They restricted their analy-
confirmed by recent publications. The nonlinear evolution ofsis to the decay instability which occurs when the sound
linearly unstable circularly polarized Alfvén waves is inten- speeccsin the unperturbed plasma is smaller than the Alfvén
sively studied numerically. Turkman and Torkelsson studiedspeeduv,. Whencs> vy, the instability becomes a beat insta-

A finite amplitude circularly polarized, parallel propagat-
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bility and the analysis needs to be modified. The aim of the
present paper is to study the absolute and convective beat
instabilities of circularly polarized Alfvén waves. Our analy-
sis closely follows the analysis of Ruderman and Simpgon,
so that we refer the reader to this pafieereafter referred to
as “Paper 1) for a detailed method description.

In Sec. Il we formulate the problem and briefly describe
the application of Briggs’ method. In Sec. Ill we study the

Phys. Plasmas 12, 062103 (2005)

Im(k)

N\

a_bsomte and cpnvectwe beat instabilities of Sma”'ampl_ltUd%lG. 1. The trajectories of thieroots of the dispersion equation that start at
circularly polarized Alfvén waves. In Sec. IV we consider a doublek root. The doublek roots are shown by the circles. The arrows
the signaling problem for convectively unstable Alfvén show the direction of motion along a trajectory whiitw) is fixed while
waves and find the criterion for the existence of spatiallyj(‘”) increases fromw; to yy+e. The double root 1 is pinching, while the

amplifying waves. Section V contains the summary of our
result and the discussion of their possible implication for
interpretation of observation obtained in space missions.

II. FORMULATION AND METHOD DESCRIPTION

We are studying the linear stability of a circularly polar- (i)
ized Alfvén wave propagating along the mean magnetic field
in the approximation of ideal MHD. The finite-amplitude (ii)
Alfvén wave (pump wave is an exact solution of the non-
linear ideal MHD equations. This solution is unstable with
respect to small perturbations. Using the linearized MHD
equations the following dispersion equation describing the
stability of the pump wave can be deriv&a:

D(w,k) = (0? - b%k?)(w = K)[(w + k)> — 4]
- a%k(w®+ v’k - 3w + k) =0. (1)

Here w=Q/w, and k=K/k,;, where ) and K are the fre-
quency and wave number of the density perturbation,and

and k, are the frequency and wave number of the pump
wave; b=cs/ v, wherecs is the sound speed angl is the
Alfvén speed calculated using the mean magnetic fielis;

the dimensionless amplitude of the pump wave giveraby
=B, /By, whereB, is the amplitude of the magnetic field in

the pump wave an8y is the magnitude of the ambient mag- (iv)
netic field.

The aim of our work is to study the absolute and con-
vective instabilities of the pump wave whep> v,. The de-
tailed description of the method for studying absolute and
convective instabilities is given by Brigtfs(see also Paper
1). For a particular problem studied in this paper the analysis
is reduced to the investigation of the asymptotic behavior of
the integral’

(iii)

Sp(x,t) = J | we““’tdw f ’ Me”‘"dk, 2 ()
o0 — D(w,k)

ast—oo, where dp is the density perturbation. The function
T(w,k) is determined by initial conditions so that it is not
important for studying the asymptotic respond2{w,k)
=D(w,k), wherew=w+kU is the Doppler-shifted frequency,
U=U/u, and U is the velocity of the observer’s reference
frame in the direction of the ambient magnetic field. The

double roots 2 and 3 are nonpinching.

Similar to Paper 1 we carry out the analysis of the
asymptotic behavior obp in five steps:

First, we calculate the maximum growth rate of the
instability yy.

Then we calculate all doublk roots of Eq.(1) by
solving the system of equations

~ )

D(w,k)=0, —=0. 3
(k) x 3
Now we consider all pairs of solutions to E(B),
(w,k), and choose only those with satisfying the

inequality

0< w < yu, (4)

wherew=w, +iw;. Pinching roots causing the absolute
instability can only arise for pair@v, k) satisfying Eq.
(4).

From all pairs(w, k) satisfying Eq(4) we choose only
those withk being a pinching root. To do this, we fix
R(w) (wherefR indicates the real part of a quaniity
and increas€i(w) from w; to yy+e€, wheree is an
arbitrary positive quantity. As a result we map the
trajectories of the two roots in the compléxplane
which merge to form the double roét If these tra-
jectories end on different sides of the real axis in the
complexk plane, then the double ro@tis pinching.
Otherwise it is nonpinchingsee Fig. 1

Finally, among all the solution@v,k) to Eq.(3) such
that w satisfies Eq(4) andk is pinching we choose
one with the largesd;. Using the notatiomnw,, for w in
this solution, we find that the asymptotic behavior of
the density perturbation is given by

op = t2 exflt(wim — fom)], (5)

Bromwich integration contoul(w) = (whereJ denotes the which implies that the instability is absolute. If there are no
imaginary part of a quantijyis taken to be above all zeros of spjutions of Eq(3) with k pinching andw satisfying Eq.(4),

B(w,k) considered as a function af.

then the instability is convective.
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ll. ABSOLUTE AND CONVECTIVE BEAT a[ (b= 1)(b-U) |22 ,
INSTABILITIES OF SMALL-AMPLITUDE ALFVEN Cys=bt— +0(a%), (12

where the+ and — signs correspond to, and cs, respec-

tively. In addition, Eq.(11) implies thatc, andcs are real in

any order approximation with respectddf the first term in

square brackets in E@ll) is positive and much larger than

2B a. In the same way we obtain that the solutions of Ef.
(6) close to b are given by

T a202- 1%
V2(b"-1) a[—(1+b)(u+b)
067:_bi_ TN
’ 4 b(1+U)

For the beat instability, Jayanti and HoIIV\?&jnave cal-
culated the maximum growth rate of the instability for small
pump-wave amplitude:

Y™m

This expression is valid fob not close to unity and we
assume this in what follows. It is worth noting thag, = a®
while y,cca in the case of the decay instabilith<1).

To find the doublek roots of the dispersion equation we

1/2
] +0(a2). (13)

The quantitiexs andc; are real in any order approximation
with respect ta if the expression in square brackets is posi-

. - tive and much larger thaa. Note also that the expansions
solve the system of equatioii3). The explicit form of these (10), (12), and (13) are only valid wher{1+U|>a. We as-

equations is given in Paper[see Eqs(8) and (9) in that S - e
papel. Our analysis here is identical to that of Paper 1 so we'me that this inequality is satisfied in what follows.
Now we use Eq(8) to calculate the double roots of the

may omit some details. It is shown in Paper}that the SyStenaispersion equation considered as an equatiokor
of equationg3) can be rewritten in terms af=w/k andk as '

8i(b>-1)
4(1 +U)(c+ 1)(c— 1)3(c? - b?)? ko= % — o), (14)
—a?{[c® + 4c® - 3c* - 2(1 + 3p?)c3 + 3b%c? + 4b’c - b?]
+U[BCS - 2%~ (5 + THA)C3 + 4622 + (1 + Sb)c — 202]) PUTES PR S &y
,oF 4(b2_ 1) 4(b2_ 1)3/2[2(U2_ 1)]1/2
403 3_ =
+a*2c°+U(3c’-c)]=0, (7) +O@, (15)
,_ Hc-1)(c?-b?)-aX3c-1) 2 ab-1)YA(1-b+2V)
- 4 2 D242l (8) Kyse= T
(c+1[c*-(1+a”+b)c+b7] * 1+b  2(1+b)qb(U+1)(b-U)]*2
When a=0, Eq.(7) has one simple roog;=-1 and three +0(@), (16)
double rootsc; 3=1, ¢, 5=b, andcg ,=—b. The approximate "
solution of Eq.(7) close to -1 is given by Kego= 2 . al+b(1+b+2U)
, 77 b-17 2(b- 1)~ b(U + 1)(U + b)]H2
T 0(a%, 9) +0(a). 17

The corresponding values af are given by

and it is straightforward to see thaf remains real in an
g ! / Bk~ (1 +U)
- 2

order approximation with respect & The approximate so- Wy = +0O(1), (18)
lutions of Eq.(7) close to 1 are given by B

a2 a8l 2u-1 ] . a%(1+U) a3[ 2(U2 - 1)}1’2

=-]l1-—t— = E31-U- + —
3=l ot s {(1 T00-12] ¢ 0@, @23 4b%-1) " 8] (b*-1)°
(10 +0(a%), (19

where the “+” and “—" signs correspond t@, and cs, re- 2(b-U) a[(b-1)(U+1)(b-U)]+2
spectively. Let us now find the solutions of E@) close tob. Wy5:= * 1+b * b2(1 + b)?

We are looking for these solutions in the form of an expan-
sion in power series=b+X__,u,a". Substituting this expres- +0(a?), (20
sion in Eq.(7) we obtain

| (b-D(b-U)

] ) { 26+U) _ al-(1+b)(U+ 1)U+ b)]”z}
W 7+— T )~
(c-b?=a

" b-1 b*%(b - 1)?
an. 11
16b(1+U) " E‘lv a (1D +0(a%). (21

The coefficientsy, are expressed in terms gf. We do not  In these expressions the number subscripts correspond to the
give these expressions because they are not used in whapper and lower signs inside the curly brackets. For example,
follows. It follows from Eq.(11) that the solutions close to  we choose the upper sign in the curly brackets to calculate
are given by ko, and the lower sign to calculatiey,. The = subscripts

Downloaded 31 Oct 2006 to 129.11.23.57. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



062103-4 D. Simpson and M. S. Ruderman Phys. Plasmas 12, 062103 (2005)

correspond to the: signs outside of the curly brackets. The 41 -UY(b? - 1)];2 — (®- 1)U
results obtained foc, andcs imply thatk, 5. and w, 5. are
real in any order approximation with respectadf the sec- 2(1-U? 1/2i 8o K- u?
ond terms in the curly brackets in Eq46) and(20) are real (b?-1)3 7 8(b%-1)2
and|b—U|>a. Similarly, ks 7. and wg 7+ are real in any order 172
7 . ' O . 2(1-U9
approximation with respect ta if the second terms in the +o(b?- 1){[ﬁ} + 40} =0(a). (29
curly brackets in Eqs(17) and(21) are real andU+b|>a. (b*-1)
) We_must now select_ values of omega Wh'c_h satisfy theSolving this quadratic equation we obtain the expressions
inequality 0<w;<yy. It is here that our analysis starts 10 yetermining the trajectories of the two rodtsandk-, that
differ from the decay instability case due to the much smallerCollide asw=w.,
maximum growth rate of the beat instability. In what follows
we assume thal is not very close either to +1 or tobtand K= kot ia® [ Usl o2+ @ 2(1-U? |2 1/2)
take |U?-1|>a, |U?>-b?/>a. We consider the case where 2 2\ TV 4| (p2-1)3
|U%-b?| < a separately. Now we can immediately rejest,
as it is obvious thafi(w4) is either greater tham, or nega-
tive. When =0 we obtaink*=k =k,, as expected. We find that
J(wy3.) #0 when —1<U<1 but in this caseJ(w,-)  J(k") is a monotonically decreasing function offor all U
=J(w34) <0 so we can rejedt,_ andks,. Fork,, andk;_the  andJ(k") is a monotonically increasing function effor all
inequality 0< ;< yy reduces toU?=0 which is always U (recall that|U|<1). WhenU <0, J(k,,) >0 so the whole
true so we retain these roots. trajectory ofk* is above the real axis. If we let= o, then we
When -1<U <b, the second term in the curly brackets see thati(k")=©(a%. This means that if is taken to be
in Eq. (20) is real. Since we assume thht+U|>a and large enough, then the trajectorylofwill cross the real axis
|U-b|>a, it follows that in this casev, s, are real in any and we have a pinching root. if >0 thenJ(k,,) <0, so the

order approximation with respect @0 When eithetU<-1  whole trajectory ok™ is below the real axis. Whem= o, we
or U>b, it follows from the assumption§l+U|>a and  obtainJ(k*)=O(a%, so that ife is taken to be large enough,

(25

|U-b|>a that|J(ws 5:)|> ym~a>. Hence, we rejedt, s.. the trajectory ok* will cross the real axis. Hence, once again
Similarly, eitherws 7. is real in any order approximation k,, is a pinching root.
with respect taa, or |J(wg 7.)| >y, SO we rejecks 7.. This analysis shows that we have pinching roots corre-

Now we must determine whether the roots which wesponding tow satisfying Eq.(4) when —-1<U<1. This
have retained are*pinching. We can simplify our analysis bymeans that the instability is absolute in a reference frame
noting thatk;_=-k,, and wz_=-w,,. This implies that the moving with the dimensionless velocity with respect to the
trajectories of the roots that collide to form the double rootrest plasma ifU| < 1. It is worth recalling, however, that this
k. and the trajectories of the roots that collide to form theresult is only valid up to a certain accuracy. We have per-
double rootks_ are symmetric to each other with respect toformed our analysis assuming that?-1|>a and|U2-b?
the imaginary axis in the complékplane. Hence, the roots > a so, to be precise, we only can claim that the instability is
ko. and k;_ are either both pinching or both nonpinching. absolute wherJ, <U<U,, whereU,=-1+0O(a) andU,=1
This observation enables us to restrict the analysis to the roat©(a).
ko, We takew=w,,+ia’o, whereo varies from 0 too,+ € Our analysis has to be modified wheris close to +1 or
with o,=[y-J(w,,)]/a® and e>0. We now letk=1+ak  =b. However, we will ignore the case whéhis close to +1
and substitute this expression into the equafifik,w)=0.  Since this analysis would provide only small corrections to
Collecting terms of the lowest order with respectaave  the boundaries of the absolute instability. We must consider
obtain the case wheld is close to b, however, as these values are
outside of the found boundaries of the absolute instability.
Hence, if pinching roots would exist fdd close to b, it
would have a serious physical implication.

When U=b+0(a) the expressions foc,s k45, and
wy 5+ are invalid and we need to modify the analysis for these
roots. This modified analysis is presented in Appendix. It
shows that the instability is convective wherrb+O(a).

WhenU=-b+0O(a), we have to modify the analysis for
Cs,7» Ko7+ and wg 7.. The modified analysis in this case is
almost identical to that in the case whdirb+(O(a), so that

K3(U2-1)(b?- 1) = 0(a?), (22)

so we letk=ak. Once again collecting terms of the lowest
order with respect ta yields

4&2(b2— 1) - 2k + + =0O(a). (23) we do not present it in this paper. The result of this analysis
4b°-1) is the same: the instability is convective whéh=-b
+0O(a).

~ Summarizing the results obtained in this section and in
i i 2_1)]-1

This equation has a double rok)t.[4(b _1)1 SO we Ietk- the Appendix we conclude that the instability is absolute

=1+a4(b*~1)]"*+a’k and substitute this into the equation whenU;<U<U, and convective otherwise. The instability

D(k,w)=0 again. This gives us the equation increment is given by
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that, when we solve the equaticﬁ(w,k):o, we obtain so-
lutions fork with J(k) # 0. Similarly to Paper 1, it is easy to
see that roots of this equation will remain real in any order
approximation with respect ta if the differences between
them in the zero-order approximation are of the order of
unity. Hence we can only obtain complex roots foif the

IV. SPATIALLY AMPLIFYING WAVES difference between at least two roots is of the ordea oir

A. Theory smaller. This can happen only whe:azﬁdﬁa)\, where\ is
real andwg; (j=1,...,0 are given by

3l 2(1-U?
¥=J(w24) = J(w3-) = %{(E}Tl)?’)

It takes its maximum valuey=+vyy, when U=0, which is
equal to the group velocity of the unstable wave mtftle.

1/2
} +0@%Y. (26)

When we have a convective instability, i.e., wheh
<U, or U>U,, we can obtain spatially amplifying solutions

which can be excited by imposing perturbations periodic in o=t (1-U), wga=* M

time *® We now determine the frequencies for which spatially ’ ’ b+1

amplifying waves can exist. We again refer readers to Paper (28
1 and Brigg4® for a detailed description of the method. Here _ 2(U+b)

we briefly describe how we will apply this theory to our Wg5,6= * b-1

particular problem.

The problem reduces to evaluating the asymptotic respe hner sign on the right-hand side of the first equation
sponse of the density perturbation given by refers towy; and the lower sign refers t@q,. A similar rule
iTHe oriwgt 7 S,k applies to the other two equations. Wheg= wy; the equa-
w_wddwj_x D(w k)e' dk, (27) tion D(w,k)=0 has a double rook; in the zero-order ap-
' proximation with respect ta, where

Sp(x,t) =
iT—o0
ast— o andx— o or x— -, S w, k) is an analytic function
of k and w which depends on the initial conditions and the — __ _ 2
amplitude of the external perturbation, and it is not important Ky o= 1, Kg34= * bt 1’

for our analysis;wy is real andB(w,k)zD(Z),k) where @

=w+kU is the Doppler-shifted frequency. Now We'outllne When [y - @yl ~ 1 for anyj 1, the is exactly one double

the step-by-step method by which we look for spatially am- . . S
root and three simple roots in the zero-order approximation

plifying waves. with respect tca. Then it is straightforward to show that the
() Spatially amplifying waves can only occur when theresimple roots remain real in any order approximation with

is a root ofD(w,k)=0 considered as an equation for respect toa wheno=0. Hence, only the two roots close to
with J(k) # 0 for realw. Hence, the first step is to find the double roots of the zero-order approximation can have

all values ofw, which we denote asy, for which this ~nonzero imaginary parts. There are particular valueJof
condition is satisfied. when two out of six quantitiesy; coincide. For these values

(i)  When we have found a palito, k) which satisfies the qf U there are two double roots in the'zero—order approxi.ma-
previous condition, we substitute=wy+iads in the  tion with respect tca. However, there is no need to modify

the analysis in this case because we always look for roots

close to the double roots of the zero-order approximation, no

creaser from 7>y /a> to zero. If the trajectory ok tter if there i h tor th " h root
crosses the redd axis then that solution can give rise matter 1T there 1S one such a roo (.)r3 Ere are two such roots.
Now we substituteo=wgj+ar+ia’o (j=1,...,0 in the

to spatially amplifying waves. ~

(i) As x——c the asymptotic response is determined byeduationD(w,k)=0 considered as an equation fior and
the root starting in the lower compldoplane with the  look for the solutions in the fornk=k;+ak. We start withj
largest imaginary part at the end of its trajectory. We=1 and substitutes=1-U+aw andk=1+ak in the equation
denote this root a%. As x— the asymptotic re-  §,, 1)=0, wherew=\+ia?s. Terms of the order & can-
sponse is determined by the root starting in the UpPege| gach other. Collecting terms of the orderadfe obtain

complexk plane with the smallest imaginary part at . . . . : T
the end of its trajectory. We denote this root ks a quadratic equation with respect kowith the solutionsk;

Then the asymptotic response is givenfix) ~ekx =~/ (U=1) andk;=-w/(U+1), which are real whew=0.
asx— —» andF(x) ~ €&* asx— . The correspond- Itis straightforward to show th{kf; andk; remain real in any
ing spatial amplification rates aref=3J(k) and order approximation with respect @mwheno=0 if A~1.
¥:=-J(k,), respectively. Hence, we take\=a\, k=ak, and repeat the procedure to
obtain a quadratic equation fde. This equation has two
roots, R{ and ﬁ{, which are real whenr=0. In addition,

To begin, we assume that we have a convective instabilk; —Ki|~1 unless; is close to 4(U+1)/(b?~1). Then
ity, so thatU>U,=1+0(a) or U<U;=-1+0O(a). In what  once again it can be shown thdtandk; and, consequently,
follows we impose a slightly stronger restriction thatk; and ki, remain real in any order approximation with
|U%2-1|>a. We first need to find all real values af such respect toa when ¢=0. So, to obtaink roots with

— 2
Kgs,6= + b-1 (29

equationf)(w,k):o and solve fork. Then we de-

B. Calculations
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nonzero imaginary parts whew=0 we have to take
Alz—i(u+1)/(b2—1)+a§, giving the following expression
for wy:

2
wd:1—U—%+a3§. (30)
In this casqu=R1=[4(b2—1)]‘1 in the lowest-order approxi-
mation with respect ta. Substitutingw=wq+iac and k
=1+aZ4(b?-1)]t+a%k in the equationD(w,k)=0 we ob-
tain a quadratic equation k. Solving this equation we
obtain the expressions for the two roots close to ukiyand
k7, with the accuracy up to terms of the orderadf

. al aU(¢é+io)
Ki=1+ -
1 4(b%-1) uz-1
a3 U2_1 1/2
+——|(£+i0)2 - ———— 31
21| €10 s 18 (3Y)

We see thafi(ky) #0 wheno=0 if ¢ satisfies the inequality

u?-1
20— 32
¢ 32(b%*-1)3 (32
The imaginary parts ok; are given by
Ik) _ -Uo 1 (1[§2_ O ]
a®  UP-1"Uu%-1\2 32(b*-1)°
1 5 U2_ 1 2 1/2)1/2
R Y
" 2“5 32(0? - 1)3} s }
(33

Let us considetd > 1. In this caseJ(k;)>0 andJ(k;) <0
wheno=0. It is straightforward to show thaik;) <0 for all
0>0, so thatk; does not give rise to spatially amplifying
waves. By calculating the produdtk;)J(k;) we can show
that 3(kj) >0 when

o< max{ (yM/a3)22 - 52.
U

and J(k;) <0 otherwise. This result implies that(kj) <0
wheno=1yy/a SinceJ(kj) >0 wheno=0, the trajectory of
ki starts in the lower half of the compléxplane and ends in
the upper half of the complex plane, so that it gives rise to
spatially amplifying waves ag— —o.

WhenU < -1 it immediately follows from Eq(33) that
J(k7) >0 for all >0. Now Eq.(34) gives the condition that
J(k;)<0. It is easy to see that the trajectory lqf starts in
the upper half of the complek plane and ends in the lower
half of the complexk plane. Hence it gives rise to spatially
amplifying waves ax— .

Now that we have studied the case whiprd,, we do not
need to do the analysis fgi=2. Instead we notice that if
(w,k) is a solution of the equation®(w,k)=0, then so is
(-w",-K’). This implies that the trajectories & are sym-
metric to those ofk] with respect to the imaginary axis.

(U2 = 1)(yglad)? - &
2U2-1 '
(34)

Phys. Plasmas 12, 062103 (2005)

Hence k; gives rise to spatially amplifying waves as
x—— whenU>1, andk; gives rise to spatially amplifying
waves ax— o whenU <-1.

Let us proceed toj=3. Now we substitutew=2(b
-U)/(b+1)+aw and k=2/(b+1)+ak in the equation
D(w,k)=0. Terms of the order o& cancel each other. Col-
lecting terms of the order af® we obtain the quadratic equa-

tion for k
b-1
———=0.
4b(b+1)
(39

K(U=Db)(U+1)+kn(2U+1—-b)+\2-

We obtain from this equation thatk) # 0 wheno=0 if the
following inequality is satisfied:
5> _(b-D(b-U)U+1) 5
A 4 = Ags
b(1 +b)

(36)

where ), can be either positive or negative. The inequality
(36) can be satisfied only for <£U<b as\j is negative
otherwise. IfA-\y=0O(1) then the imaginary part df is of
ordera and its sign is determined byonly. The variation of
o affects only terms of higher-order approximation in the
expansion ok in power series with respect # This implies
that the whole trajectory of th& root that we obtain by
varying o from zero toyy/a is either below or above the
real k axis. Hence such a root cannot give rise to spatially
amplifying waves.

It follows from this analysis that we can obtairkaoot
with the trajectory crossing the reklaxis only if we take

A=\g+al’2\,. Then, in the lowest-order approximation with
respect taa, Eq. (35) has the repeated root

No(2U + 1 —D)

ko= 2 = 37
ko 2(b-U)(U+1) (37
Now we look for the solution in the fork=ky+at%k;. Sub-

stituting this expression in the equatiﬁﬁw, k)=0 we obtain
in the lowest-order approximation with respecttthe equa-

tion for Ky,

=2 _ oAy ~A)(L+b)?
L 2(b-UAU+ 1)

(38)

where

_ (200° - 11b%+ 6b + 1)U — b%(3b* - 260+ 7) (39)
1 16(1 +b)3(b - 1)b? '

In order to haveJ(k) # 0, the following inequalityX1< Ny
must be satisfied. Ik;—\;=0O(1) then the imaginary part of

k is of ordera®? and its sign is determined by; only. Once
again the variation otr affects only terms of higher-order
approximation in the expansion & in power series with
respect toa. And once again this implies that the whole
trajectory of thek root that we obtain by varying from zero

to yy/a is either below or above the reahxis, so that such
a root cannot give rise to spatially amplifying waves.
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On the basis of this analysis we conclude that, in order t¢/. SUMMARY AND CONCLUSIONS
have ak root with the trajectory crossing the rdabxis, we
have to take\;=\;+a\,. Then it follows from Eq.(38) that ~In this paper we ha\{e considered the beat .instability of a
~k1:a1’2~k2, so thatk=2/(b+ 1)+a?0+a2~k2. Now we substitute circularly polarized Alfven ngépump wave Whlch occurs
this expression fork and w=2(b-U)/(b+1)+an,+a2\ when the sound speed |s_b|gger than the Alfvén sp(daed_
+a3(7\2+icr) in the equationﬁ(w KI=0 to obtain, in the =cg/vp> 1)._V\/_e hav_e_ studied the absolute_ and _c_on\_/ectlve
e L ' . nature of this instability. The nature of the instability is de-
Iowest—order~ approximation with respect & a quadratic termined by the dimensionless parametér which is the
equation fork,. The roots of this equation are given by ratio of the speed of the reference frame with respect to the
~, 1+6b-11p*-200° . [H + 128b*1 +b)\ g0 M2 rest plasma to t'hr? Ar\]lfvén spl)leed. YVe(;-sct)ricted our anallly_sis to
2~ 2 3h_1) 2 4 ) pump waves with the small amplitu ur main result is
160°(1 +b)*b=1) 18071 +b)*b-U)(U +1) that the instability if absolute wheld, <U < U, and convec-
(40) tive otherwise, whereU,=-1+0(a) and U,=1+0(a).

whereH is a real quantity expressed in termsbotJ, Ao, and Hence, the instability is absolute in a reference frame mov-

Xz. We do not give this expression because it is not used in'9 with a velocity bigger than = +0(a) and smaller than

~. o o up+O(a) with respect to the rest plasma. We can give a
what follows. 3(k;) #0 when =0 if H<O0. Then it iS gy ne physical interpretation of this result. Jayanti and
straightforward to see that Hollweg™ have shown that the beat instability primarily in-
sgri 3 (k)] = sgrirg(b - U)(U + 1)1, volves forward and backward propagating Alfvén waves

913 (k) 1= sgrihol ) )] with the dispersion equations=w;a(k) and w=wpa(k), re-

o~ spectively. For smalh we haveR(wsas) = vpk and R(wpa)
sgriI(ky)]= = sgride(b - U)(U + 1)], ~up(2-K), so that d%R(wg)/dk=vs and dR(wpa)/dk
for any o= 0. This means that the two trajectories of the two = ~va- This implies that the wave energy is transported with
k roots close to 2(b+1) do not cross the re& axis whens  Velocity —u, by the backwards propagating Alfvén wave and
varies from zero toyy/a3. Hence, these roots cannot give With velocity v, by the forwards propagating Alfvén wave.
rise to spatially amplifying waves. Using the method outlined in Paper 1 we obtain thax, ifs

Once again there is no need to do the ana]ysiq':fgt the Spatial coordinate in the reference frame mOVing with

because the trajectories of the rosfsclose tok, are sym-  Velocity U=v,U parallel to the direction of Alfvén wave
metric to the trajectories of the root§ close toks with propagation, then the perturbed portion of the spatial domain

respect to the imaginary axis. Hence that the root¢ also ~ after timet is given by the inequality ttus+U) <x' <(uva

do not give rise to spatially amplifying waves. —U)t. This shows that iU <-wv, then the left boundary is
Finally, we considej=5,6. Theanalysis for these cases moving forward, and ifU> v, then the right boundary is

is very similar to that forj=3,4, so weomit it and only  moving backwards. In these two situations the perturbations

present the final result: the rodés close toks andk close to  are swept away and we have a convective instability. This

Fﬁ do not give rise to spatially amplifying waves. leaves us with the result that we have absolute instability if

When j=3, the expressions fdg, k;, andk, containb ~ ~ta<U<ua.
-U in the denominator. It can be shown that the same is true  We have also studied the signaling problem when either
when j=4, and similar expressions contditU in the de- U<U, or U>U,, so that the instability is convective. We
nominator whenj=5,6. This means that the analysis fpr have found that signaling drives spatially amplifying waves
=3,...,6 is only valid when|U2-b?|>O(a). When only if the signaling frequency is equal taug, wherew, is
|U2-b?/=0(a) we need to modify it. We repeated the analy- 9iven by Eq.(30) with £ satisfying the inequality32). The
sis takingU = +b+O(a) and arrived at the same results: nonespatial amplification rate is given by E(2)

of the rootsks, ki, ki, andks gives rise to spatially amplify- Similar to Paper 1 we apply our results to circularly
ing waves. polarized Alfvén waves propagating in the solar wind. Both

To summarize, we have shown that spatially amplifyingthe Alfvén and sound speed are of order 50 km/s at the Earth
waves only exist ifw=*wy Where wy is given by Eq.(30)  Orbit. The solar wind speed, is of order 500 km/s. In the
with ¢ satisfying the inequality(32). The corresponding Solar reference frame the speed of any realistic space station

wave numbers are given by is much smaller thang,. This imply that the space station
) reference frame moves relative to the rest plasma with the
k= + {1 + ?—} +0(ad). (41)  speed approximately equal tgq, i.e., [U|= v, Hence, we
4(b"-1) obtain|U|~ 10, |U|>Uj, U,, and the instability of any pump
When U<-1+0(a) there is a spatially amplifying wave Wave is convective in the space station reference frame.
traveling in the positivex direction, and wherJ >1+0(a) _ Letus assume that a wave packet is created in the solar
there is a spatially amplifying wave traveling in the negativeW'nd a_t the |n|t|a! moment of time. We estlmat_e the dls_tance
x direction. The spatial amplification rate is given by that this convectively unstable wave packet will travel in the
5 5 o space station reference frame before its amplitude increases
3[Kk(o = 0)]| = a u-1 _ & (42) by e-times. Since, in accordance with the results obtained in
! U?-1|32b>-1)3 Sec. Ill, the wave packet has the maximum increment when
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U=0, which corresponds to the rest plasma reference frame, [330%-2b+ 1 - 64(b* - 1)U,]"?
- . X= . (A2)
we conclude that this reference frame travels with the un 32b(b+ 1)
stable wave packet. Taking=0.1 and assuming thdt—-1
~1 we obtain from Eq(26) y=~2Xx 10 Let us consider a The corresponding values &fand w are given by
pump wave with the period in the solar reference frame. 112
The period of this wave in the solar wind reference frame is 2 {i32b(b+ Dx+3(b- 1)} +O(ad),

approximately Tous/us and its frequency is w, ka5t b+1( £320(b+1)x-(b-1)
=27up(Touse) 1= 0.6/T,. Then the dimensional increment is (A3)
5=0.6y/Ty=1.2X10%/T,, and thee-folding time is y*

~10'T; s. T'his implie~s_ that the unstable wave packet'will a?k, o [+32b(b+ 1)x+ 3(b - 1)]

travel the distances.;y *~5X 10°T, km before its ampli- Wy 55= : 6207~ 1)

tude increases bg-times. TakingTy equal to 1 h, which is

the typical period of Alfvén waves observed in the solar X [£320(b+ 1)x - (b— 1)]+ O(a%, (A4)

wind, we obtain that this distance is approximately equal to
2% 10* km= 130 a.u. Hence, if a wave packet is excited bywhere thex signs inside the curly brackets correspond to the
a small perturbation near the Sun, it is unlikely that thisSubscripts 4 and 5, respectively, and thesigns outside the
packet will have large enough amplitude at the Earth orbit tdPrackets correspond to thet” and “—" subscripts. Equa-
be observable. tions (A3) and(A4) are only valid if the denominator in the

Now we consider the signaling problem. Once again wecurly brackets in Eq(A3) is not close to zero. It is straight-
take uy~50 km/s andus,~500 km/s, so thatl ~10. Then  forward to show that eitheF(w, 5.) <O or J(wy 5.) >y if X
it follows from Eq. (42) that, for b—1~1, the maximum is purely imaginary. Hence, in what follows, we assume that
amplification rate is approximately equal to 0ed2so that U satisfies

i ot -1,-3

the _spatlal amplification scgle Is= 5% a. Let us once 3302 2b+ 1
again take a pump wave with the peridg in the solar ref- Upy<———5———.
erence frame. Then once again the period of this wave is 64b(b"— 1)
approximately equal tFousl/ va in the sola_rlwmd reference  Then it follows from Eq(A4) that we can only obtaim with
frame, and |t_s; frequency EOZZWUA_(TovsoD ~0.6/T,. Us- 0<J(w) < yy~ad if we let
ing the relationwg=vak,, We obtainL =80u Tea 3. Once
again takinga=0.1 andTy=1 h, we eventually arrive dt _ 3(b-1)

(A5)

=1.5x 109 km=100 a.u. This result impli it is hi x= +0@")
=1. = U, plies that it is highly 32b(b+1)
improbable to observe spatially amplifying waves at the
Earth orbit in the solar wind with the sound speed biggeror
than the Alfvén speetb>1). b-1
- 2
X 3%(b+l)+0(a). (AB)
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. : . =ck
In this appendix we study the absolute and convective
instabilities of the pump wave in the case whéiis close to
b. Let us takeU=b+aU;. In this case the expressions for

Using Eq.(A2) we find the corresponding values 05,

- = 27~ .23
Cs5 K45 andwy s, are invalid and we need to modify our Up=Uz = 8b(b- 1) rarvx, (A7)
analysis for these roots. We carry out the same procedure as
before to calculate, k, and » with the only difference that b
U=b+aU, in Eq. (7). It is easy to show that whed, is of U,=Uy= m +a%y, (A8)

the order of unity then eithe¥(w) <0 or J(w)> yy. There-
fore we letU,=aU, and repeat the procedure. In this case Weyhere ) is a free parameter that has to be positive in order to

obtain haveJ(w) # 0. It is easy to see that these valuedJgfsatisfy
5b-1)(3b+1 Eq. (A5). WhenU,=U,;,
Cis=b+a? %ix +0(a%, (A1) q e
' 32b(b=-1) a%(3b-1) a®?
Cs=b+ X (A9)
where 8b(b-1) 3
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(A17)

ke, = + 4ia1/3[ 2xb }1/2 25-2b+110*-b°
+ - 1) ’

30 (A10) X< 64— )P -1°

Since x>0, this inequality can be satisfied only if its right-
o 8ia 2b)( vz hand side is positive. The right-hand side of E417) is
W= 3(b2 1) (A11) positive whenb<<b.=~1.33, and it is negative otherwise. In
what follows we assume th&t<b, and Eq.(A17) is satis-
We do not give the expressions fof, k,., andw,, because fied. -
either J(wss) <O or J(wss)>yy. We obtain 6<J(ws.) Now we takew=w,_+ia%c and k=k/a and substitute

<om if x satisfies these expressions into the equati®fw,k)=0 to verify
whetherk,_ is a pinching root. This gives us a quadratic

3 erks- is
0<yxy< m (A12) equatloifork, _
bu?k? + 4i(b — 1) ub'2+ 2b(b — 1)(b + 1)3a ]k

Now we substitutes= w5_+la30' andk=a'%k in the equation —4(b-1)*=0. (A18)

D(w,k)=0 and solve it foik in the lowest-order approxima-

tion with respect ta, so that we can map the trajectories of Wheno> 0 this equation has two purely imaginary rodts,
thek roots as we increase from 0 to[ yy—J(ws_)]/as. We  and k. If we multiply the imaginary parts of the roots, we
obtain the cubic equation obtain

— b 4
b 1/2 20 1¥2|2 3200 J(k+) (k) = % (A19)
Y5w-n) [V sw-n] | Tr-v g

(A13) We see that the imaginary partstandI‘ always have the
same signs, so that andk™ are on the same side of the real
Wherey:—iE Wheno=0 we obtain thay=-iks_ is a double axis. This implies thak,_ is not pinching. Thus the instabil-
root as expected. A graphical investigation of HA13) Ity iS always convective whe=b+Uz. _
shows that for any> 0 there is only one real rooy;, which Summarizing the results obtained in this appendix we
is always greater than 0. The other two roots that collide tgonclude that the instability is convective whe=b
form the double root/=-iks_ when o=0 are complex con- +0(a).
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