204 research outputs found

    Experimental infection of calves by two genetically-distinct strains of rift valley fever virus

    Get PDF
    Citation: Wilson, W. C., Davis, A. S., Gaudreault, N. N., Faburay, B., Trujillo, J. D., Shivanna, V., . . . Richt, J. A. (2016). Experimental infection of calves by two genetically-distinct strains of rift valley fever virus. Viruses, 8(5). doi:10.3390/v8050145Additional Authors: McVey, D. S.Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves. © 2016 by the authors; licensee MDPI, Basel, Switzerland

    Maternal exposure to polychlorinated biphenyls and the secondary sex ratio: an occupational cohort study

    Get PDF
    Though commercial production of polychlorinated biphenyls was banned in the United States in 1977, exposure continues due to their environmental persistence. Several studies have examined the association between environmental polychlorinated biphenyl exposure and modulations of the secondary sex ratio, with conflicting results. Our objective was to evaluate the association between maternal preconceptional occupational polychlorinated biphenyl exposure and the secondary sex ratio. We examined primipara singleton births of 2595 women, who worked in three capacitor plants at least one year during the period polychlorinated biphenyls were used. Cumulative estimated maternal occupational polychlorinated biphenyl exposure at the time of the infant's conception was calculated from plant-specific job-exposure matrices. A logistic regression analysis was used to evaluate the association between maternal polychlorinated biphenyl exposure and male sex at birth (yes/no). Maternal body mass index at age 20, smoking status, and race did not vary between those occupationally exposed and those unexposed before the child's conception. Polychlorinated biphenyl-exposed mothers were, however, more likely to have used oral contraceptives and to have been older at the birth of their first child than non-occupationally exposed women. Among 1506 infants liveborn to polychlorinated biphenyl-exposed primiparous women, 49.8% were male; compared to 49.9% among those not exposed (n = 1089). Multivariate analyses controlling for mother's age and year of birth found no significant association between the odds of a male birth and mother's cumulative estimated polychlorinated biphenyl exposure to time of conception. Based on these data, we find no evidence of altered sex ratio among children born to primiparous polychlorinated biphenyl-exposed female workers

    Diagnostic accuracy of post-mortem MRI for thoracic abnormalities in fetuses and children

    Get PDF
    OBJECTIVES: To compare the diagnostic accuracy of post-mortem magnetic resonance imaging (PMMR) specifically for non-cardiac thoracic pathology in fetuses and children, compared with conventional autopsy. METHODS: Institutional ethics approval and parental consent was obtained. A total of 400 unselected fetuses and children underwent PMMR before conventional autopsy, reported blinded to the other dataset. RESULTS: Of 400 non-cardiac thoracic abnormalities, 113 (28 %) were found at autopsy. Overall sensitivity and specificity (95 % confidence interval) of PMMR for any thoracic pathology was poor at 39.6 % (31.0, 48.9) and 85.5 % (80.7, 89.2) respectively, with positive predictive value (PPV) 53.7 % (42.9, 64.0) and negative predictive value (NPV) 77.0 % (71.8, 81.4). Overall agreement was 71.8 % (67.1, 76.2). PMMR was most sensitive at detecting anatomical abnormalities, including pleural effusions and lung or thoracic hypoplasia, but particularly poor at detecting infection. CONCLUSIONS: PMMR currently has relatively poor diagnostic detection rates for the commonest intra-thoracic pathologies identified at autopsy in fetuses and children, including respiratory tract infection and diffuse alveolar haemorrhage. The reasonable NPV suggests that normal thoracic appearances at PMMR exclude the majority of important thoracic lesions at autopsy, and so could be useful in the context of minimally invasive autopsy for detecting non-cardiac thoracic abnormalities. KEY POINTS: • PMMR has relatively poor diagnostic detection rates for common intrathoracic pathology • The moderate NPV suggests that normal PMMR appearances exclude most important abnormalities • Lung sampling at autopsy remains the "gold standard" for pulmonary pathology

    Synchronized cycles of bacterial lysis for in vivo delivery

    Get PDF
    The pervasive view of bacteria as strictly pathogenic has given way to an ppreciation of the widespread prevalence of beneficial microbes within the human body. Given this milieu, it is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ. Here, we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We use microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug deliver platform via co-culture with human cancer cells in vitro. As a proof of principle, we track the bacterial population dynamics in ectopic syngeneic colorectal tumors in mice. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies, we orally administer the lysis strain, alone or in combination with a clinical chemotherapeutic, to a syngeneic transplantation model of hepatic colorectal metastases. We find that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites.National Institute of General Medical Sciences (U.S.) (GM069811)San Diego Center for Systems Biology (P50 GM085764)National Cancer Institute (U.S.). Swanson Biotechnology Center (Koch Institute Support Grant (P30-CA14051))National Institute of Environmental Health Sciences (Core Center Grant (P30- ES002109))National Institutes of Health (U.S.) (NIH Pathway to Independence Award NIH (K99 CA197649-01))Misrock Postdoctoral fellowshipNational Defense Science and Engineering Graduate (NDSEG) Fellowshi

    Does dietary calcium interact with dietary fiber against colorectal cancer? : a case-control study in Central Europe

    Get PDF
    BACKGROUND: An unfavorable trend of increasing rates of colorectal cancer has been observed across modern societies. In general, dietary factors are understood to be responsible for up to 70% of the disease’s incidence, though there are still many inconsistencies regarding the impact of specific dietary items. Among the dietary minerals, calcium intake may play a crucial role in the prevention. The purpose of this study was to assess the effect of intake of higher levels of dietary calcium on the risk of developing of colorectal cancer, and to evaluate dose dependent effect and to investigate possible effect modification. METHODS: A hospital based case–control study of 1556 patients (703 histologically confirmed colon and rectal incident cases and 853 hospital-based controls) was performed between 2000–2012 in Krakow, Poland. The 148-item semi-quantitative Food Frequency Questionnaire to assess dietary habits and level of nutrients intake was used. Data regarding possible covariates was also collected. RESULTS: After adjustment for age, gender, education, consumption of fruits, raw and cooked vegetables, fish, and alcohol, as well as for intake of fiber, vitamin C, dietary iron, lifetime recreational physical activity, BMI, smoking status, and taking mineral supplements, an increase in the consumption of calcium was associated with the decrease of colon cancer risk (OR = 0.93, 95% CI: 0.89-0.98 for every 100 mg Ca/day increase). Subjects consumed >1000 mg/day showed 46% decrease of colon cancer risk (OR = 0.54, 95% CI: 0.35-0.83). The effect of dietary calcium was modified by dietary fiber (p for interaction =0.015). Finally, consistent decrease of colon cancer risk was observed across increasing levels of dietary calcium and fiber intake. These relationships were not proved for rectal cancer. CONCLUSIONS: The study confirmed the effect of high doses of dietary calcium against the risk of colon cancer development. This relationship was observed across different levels of dietary fiber, and the beneficial effect of dietary calcium depended on the level of dietary fiber suggesting modification effect of calcium and fiber. Further efforts are needed to confirm this association, and also across higher levels of dietary fiber intake

    European Code against Cancer 4th Edition:Diet and cancer

    Get PDF
    AbstractLifestyle factors, including diet, have long been recognised as potentially important determinants of cancer risk. In addition to the significant role diet plays in affecting body fatness, a risk factor for several cancers, experimental studies have indicated that diet may influence the cancer process in several ways. Prospective studies have shown that dietary patterns characterised by higher intakes of fruits, vegetables, and whole-grain foods, and lower intakes of red and processed meats and salt, are related to reduced risks of death and cancer, and that a healthy diet can improve overall survival after diagnosis of breast and colorectal cancers. There is evidence that high intakes of fruit and vegetables may reduce the risk of cancers of the aerodigestive tract, and the evidence that dietary fibre protects against colorectal cancer is convincing. Red and processed meats increase the risk of colorectal cancer. Diets rich in high-calorie foods, such as fatty and sugary foods, may lead to increased calorie intake, thereby promoting obesity and leading to an increased risk of cancer. There is some evidence that sugary drinks are related to an increased risk of pancreatic cancer.Taking this evidence into account, the 4th edition of the European Code against Cancer recommends that people have a healthy diet to reduce their risk of cancer: they should eat plenty of whole grains, pulses, vegetables and fruits; limit high-calorie foods (foods high in sugar or fat); avoid sugary drinks and processed meat; and limit red meat and foods high in salt

    Mapping the Environmental Fitness Landscape of a Synthetic Gene Circuit

    Get PDF
    Gene expression actualizes the organismal phenotypes encoded within the genome in an environment-dependent manner. Among all encoded phenotypes, cell population growth rate (fitness) is perhaps the most important, since it determines how well-adapted a genotype is in various environments. Traditional biological measurement techniques have revealed the connection between the environment and fitness based on the gene expression mean. Yet, recently it became clear that cells with identical genomes exposed to the same environment can differ dramatically from the population average in their gene expression and division rate (individual fitness). For cell populations with bimodal gene expression, this difference is particularly pronounced, and may involve stochastic transitions between two cellular states that form distinct sub-populations. Currently it remains unclear how a cell population's growth rate and its subpopulation fractions emerge from the molecular-level kinetics of gene networks and the division rates of single cells. To address this question we developed and quantitatively characterized an inducible, bistable synthetic gene circuit controlling the expression of a bifunctional antibiotic resistance gene in Saccharomyces cerevisiae. Following fitness and fluorescence measurements in two distinct environments (inducer alone and antibiotic alone), we applied a computational approach to predict cell population fitness and subpopulation fractions in the combination of these environments based on stochastic cellular movement in gene expression space and fitness space. We found that knowing the fitness and nongenetic (cellular) memory associated with specific gene expression states were necessary for predicting the overall fitness of cell populations in combined environments. We validated these predictions experimentally and identified environmental conditions that defined a “sweet spot” of drug resistance. These findings may provide a roadmap for connecting the molecular-level kinetics of gene networks to cell population fitness in well-defined environments, and may have important implications for phenotypic variability of drug resistance in natural settings

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
    corecore