787 research outputs found
Nonlinear acoustic waves in channels with variable cross sections
The point symmetry group is studied for the generalized Webster-type equation
describing non-linear acoustic waves in lossy channels with variable cross
sections. It is shown that, for certain types of cross section profiles, the
admitted symmetry group is extended and the invariant solutions corresponding
to these profiles are obtained. Approximate analytic solutions to the
generalized Webster equation are derived for channels with smoothly varying
cross sections and arbitrary initial conditions.Comment: Revtex4, 10 pages, 2 figure. This is an enlarged contribution to
Acoustical Physics, 2012, v.58, No.3, p.269-276 with modest stylistic
corrections introduced mainly in the Introduction and References. Several
typos were also correcte
Interaction of Kelvin waves and nonlocality of energy transfer in superfluids
We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum
Geophysical studies with laser-beam detectors of gravitational waves
The existing high technology laser-beam detectors of gravitational waves may
find very useful applications in an unexpected area - geophysics. To make
possible the detection of weak gravitational waves in the region of high
frequencies of astrophysical interest, ~ 30 - 10^3 Hz, control systems of laser
interferometers must permanently monitor, record and compensate much larger
external interventions that take place in the region of low frequencies of
geophysical interest, ~ 10^{-5} - 3 X 10^{-3} Hz. Such phenomena as tidal
perturbations of land and gravity, normal mode oscillations of Earth,
oscillations of the inner core of Earth, etc. will inevitably affect the
performance of the interferometers and, therefore, the information about them
will be stored in the data of control systems. We specifically identify the
low-frequency information contained in distances between the interferometer
mirrors (deformation of Earth) and angles between the mirrors' suspensions
(deviations of local gravity vectors and plumb lines). We show that the access
to the angular information may require some modest amendments to the optical
scheme of the interferometers, and we suggest the ways of doing that. The
detailed evaluation of environmental and instrumental noises indicates that
they will not prevent, even if only marginally, the detection of interesting
geophysical phenomena. Gravitational-wave instruments seem to be capable of
reaching, as a by-product of their continuous operation, very ambitious
geophysical goals, such as observation of the Earth's inner core oscillations.Comment: 29 pages including 8 figures, modifications and clarifications in
response to referees' comments, to be published in Class. Quant. Gra
Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: impact of optical rotation
We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters
Anomalous Transient Current in Nonuniform Semiconductors
Nonequilibrium processes in semiconductors are considered with highly
nonuniform initial densities of charge carriers. It is shown that there exist
such distributions of charge densities under which the electric current through
a sample displays quite abnormal behaviour flowing against the applied voltage.
The appearance of this negative electric current is a transient phenomenon
occurring at the initial stage of the process. After this anomalous negative
fluctuation, the electric current becomes normal, i.e. positive as soon as the
charge density becomes more uniform. Several possibilities for the practical
usage of this effect are suggested.Comment: 1 file, 11 pages, RevTex, no figure
6-gene promoter methylation assay is potentially applicable for prostate cancer clinical staging based on urine collection following prostatic massage
The detection of prostate cancer (PCa) biomarkers in bodily fluids, a process known as liquid biopsy, is a promising approach and particularly beneficial when performed in urine samples due to their maximal non‑invasiveness requirement of collection. A number of gene panels proposed for this purpose have allowed discrimination between disease‑free prostate and PCa; however, they bear no significant prognostic value. With the purpose to develop a gene panel for PCa diagnosis and prognosis, the methylation status of 17 cancer-associated genes were analyzed in urine cell‑free DNA obtained from 31 patients with PCa and 33 control individuals using methylation‑specific polymerase chain reaction (MSP). Among these, 13 genes indicated the increase in methylation frequency in patients with PCa compared with controls. No prior association has been reported between adenomatosis polyposis coli 2 (APC2), homeobox A9, Wnt family member 7A (WNT7A) and N‑Myc downstream‑regulated gene 4 protein genes with PCa. The 6‑gene panel consisting of APC2, cadherin 1, forkhead box P1, leucine rich repeat containing 3B, WNT7A and zinc family protein of the cerebellum 4 was subsequently developed providing PCa detection with 78% sensitivity and 100% specificity. The number of genes methylated (NGM) value introduced for this panel was indicated to rise monotonically from 0.27 in control individuals to 4.6 and 4.25 in patients with highly developed and metastatic T2/T3 stage cancer, respectively. Therefore, the approach of defining the NGM value may not only allow for the detection of PCa, but also provide a rough evaluation of tumor malignancy and metastatic potential by non‑invasive MSP analysis of urine samples
Correlated multi-electron dynamics in ultrafast laser pulse - atom interactions
We present the results of the detailed experimental study of multiple
ionization of Ne and Ar by 25 and 7 fs laser pulses. For Ne the highly
correlated "instantaneous" emission of up to four electrons is triggered by a
recollisional electron impact, whereas in multiple ionization of Ar different
mechanisms, involving field ionization steps and recollision-induced
excitations, play a major role. Using few-cycle pulses we are able to suppress
those processes that occur on time scales longer than one laser cycle.Comment: 9 pages, 4 figure
Search for astro-gravity correlations
A new approach in the gravitational wave experiment is considered. In
addition to the old method of searching for coincident reactions of two
separated gravitational antennae it was proposed to seek perturbations of the
gravitational detector noise background correlated with astrophysical events
such as neutrino and gamma ray bursts which can be relaibly registered by
correspondent sensors. A general algorithm for this approach is developed. Its
efficiency is demonstrated in reanalysis of the old data concerning the
phenomenon of neutrino-gravity correlation registered during of SN1987A
explosion.Comment: 29 pages (LaTeX), 4 figures (EPS
Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging
Citation: Ablikim, U., Bomme, C., Xiong, H., Savelyev, E., Obaid, R., Kaderiya, B., . . . Rolles, D. (2016). Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging. Scientific Reports, 6, 8. doi:10.1038/srep38202An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model
- …