8 research outputs found

    Processing the overlay of geometry segments in solving hydrophysics problems by the finite difference method

    Get PDF
    The article deals with issues related to increasing the efficiency of working with data on the geometry of the computational domain when solving hydrophysics problems using the finite difference method. The model problem is a system of equations of the pollutant distribution, including the oil and its refined products, in the computational domain – Azov Sea. To describe the computational domain, a model of a two-dimensional computational grid is used, which is used in the implementation of numerical calculations. Class diagrams are presented for describing the geometry of the object under study, as well as its constituent segments. In order to improve the performance of calculations, an algorithm for combining geometry segments was developed, in which the original algorithm was divided into separate fragments by introducing a number of conditional structures. As a result of experimental data processing, regression equations were obtained that describe the dependence of the algorithm execution time on the number of joins. The developed algorithm and class library make it possible to work with the description of the geometry of the object under study as a set of parameterized primitives and educe the time spent on the formation of the description of the computational domain by up to 27%

    A software package for solving grid equations in areas with geometry "stretched" along one of the spatial directions

    Get PDF
    A method for solving grid equations in areas with geometry "stretched" along one of the spatial directions is proposed. Method proposed for model includes pollutants whose concentration in the Azov Sea, according to the analysis of scientific publications and environmental databases, exceeds the maximum permissible concentration (MPC). The mechanism of the preconditioner formation is described. The estimation of the minimum and maximum eigenvalues is performed. Using object-oriented analysis and design, a class library has been implemented to solve the problem of impurity propagation in a shallow reservoir. The architecture of an information system to support scientific research capable of functioning in conditions of using heterogeneous computing environments is described. The system is based on the requirement of the maximum possible use of free software in order to minimize capital and operational costs. The system uses classes that allow you to read and write information about the geometry of the object under study and the parameters of the calculated grid. Numerical experiments were carried out using the developed software package, including the proposed mathematical model, focused on the multiprocessor computing system (MCS). The dependences of the SLAE solution time on the number of diagonals and the order of the matrix are obtained. The number of iterations for solving grid equations has been experimentally determined depending on the ratio of the number of nodes in spatial coordinates

    Influence of ultraviolet radiation on sowing qualities of the cucumber family of the “Murashka” varieties

    Get PDF
    Increasing the productivity of crops, preliminary stimulation of seeds. One of the effective physical methods of pre-sowing stimulation is the treatment of seeds with solar ultraviolet radiation A and B. The article examines the results of research studies measuring the density of germination energy and the similarity of the “Murashka” variety cucumber seeds. The analysis of dependences, and incomes according to the research results, allows the maximum values of germination energy and germination of cucumber seeds are 190 – 210 J/m2

    Solving Grid Equations Using the Alternating-triangular Method on a Graphics Accelerator

    Get PDF
    The paper describes a parallel-pipeline implementation of solving grid equations using the modified alternating-triangular iterative method (MATM), obtained by numerically solving the equations of mathematical physics. The greatest computational costs at using this method are on the stages of solving a system of linear algebraic equations (SLAE) with lower triangular and upper non-triangular matrices. An algorithm for solving the SLAE with a lower triangular matrix on a graphics accelerator using NVIDIA CUDA technology is presented. To implement the parallel-pipeline method, a three-dimensional decomposition of the computational domain was used. It is divided into blocks along the y coordinate, the number of which corresponds to the number of GPU streaming multiprocessors involved in the calculations. In turn, the blocks are divided into fragments according to two spatial coordinates — x and z. The presented graph model describes the relationship between adjacent fragments of the computational grid and the pipeline calculation process. Based on the results of computational experiments, a regression model was obtained that describes the dependence of the time for calculation one MATM step on the GPU, the acceleration and efficiency for SLAE solution with a lower triangular matrix by the parallel-pipeline method on the GPU were calculated using the different number of streaming multiprocessors.The paper describes a parallel-pipeline implementation of solving grid equations using the modified alternating-triangular iterative method (MATM), obtained by numerically solving the equations of mathematical physics. The greatest computational costs at using this method are on the stages of solving a system of linear algebraic equations (SLAE) with lower triangular and upper non-triangular matrices. An algorithm for solving the SLAE with a lower triangular matrix on a graphics accelerator using NVIDIA CUDA technology is presented. To implement the parallel-pipeline method, a three-dimensional decomposition of the computational domain was used. It is divided into blocks along the y coordinate, the number of which corresponds to the number of GPU streaming multiprocessors involved in the calculations. In turn, the blocks are divided into fragments according to two spatial coordinates — x and z. The presented graph model describes the relationship between adjacent fragments of the computational grid and the pipeline calculation process. Based on the results of computational experiments, a regression model was obtained that describes the dependence of the time for calculation one MATM step on the GPU, the acceleration and efficiency for SLAE solution with a lower triangular matrix by the parallel-pipeline method on the GPU were calculated using the different number of streaming multiprocessors

    Processing the overlay of geometry segments in solving hydrophysics problems by the finite difference method

    No full text
    The article deals with issues related to increasing the efficiency of working with data on the geometry of the computational domain when solving hydrophysics problems using the finite difference method. The model problem is a system of equations of the pollutant distribution, including the oil and its refined products, in the computational domain – Azov Sea. To describe the computational domain, a model of a two-dimensional computational grid is used, which is used in the implementation of numerical calculations. Class diagrams are presented for describing the geometry of the object under study, as well as its constituent segments. In order to improve the performance of calculations, an algorithm for combining geometry segments was developed, in which the original algorithm was divided into separate fragments by introducing a number of conditional structures. As a result of experimental data processing, regression equations were obtained that describe the dependence of the algorithm execution time on the number of joins. The developed algorithm and class library make it possible to work with the description of the geometry of the object under study as a set of parameterized primitives and educe the time spent on the formation of the description of the computational domain by up to 27%

    A software package for solving grid equations in areas with geometry "stretched" along one of the spatial directions

    No full text
    A method for solving grid equations in areas with geometry "stretched" along one of the spatial directions is proposed. Method proposed for model includes pollutants whose concentration in the Azov Sea, according to the analysis of scientific publications and environmental databases, exceeds the maximum permissible concentration (MPC). The mechanism of the preconditioner formation is described. The estimation of the minimum and maximum eigenvalues is performed. Using object-oriented analysis and design, a class library has been implemented to solve the problem of impurity propagation in a shallow reservoir. The architecture of an information system to support scientific research capable of functioning in conditions of using heterogeneous computing environments is described. The system is based on the requirement of the maximum possible use of free software in order to minimize capital and operational costs. The system uses classes that allow you to read and write information about the geometry of the object under study and the parameters of the calculated grid. Numerical experiments were carried out using the developed software package, including the proposed mathematical model, focused on the multiprocessor computing system (MCS). The dependences of the SLAE solution time on the number of diagonals and the order of the matrix are obtained. The number of iterations for solving grid equations has been experimentally determined depending on the ratio of the number of nodes in spatial coordinates

    Influence of ultraviolet radiation on sowing qualities of the cucumber family of the “Murashka” varieties

    No full text
    Increasing the productivity of crops, preliminary stimulation of seeds. One of the effective physical methods of pre-sowing stimulation is the treatment of seeds with solar ultraviolet radiation A and B. The article examines the results of research studies measuring the density of germination energy and the similarity of the “Murashka” variety cucumber seeds. The analysis of dependences, and incomes according to the research results, allows the maximum values of germination energy and germination of cucumber seeds are 190 – 210 J/m2
    corecore