24 research outputs found

    Sound can improve visual search in developmental dyslexia

    Get PDF
    We examined whether developmental dyslexic adults suffer from sluggish attentional shifting (SAS; Hari and Renvall in Trends Cogn Sci 5:525–532, 2001) by measuring their shifting of attention in a visual search task with dynamic cluttered displays (Van der Burg et al. in J Exp Psychol Human 34:1053–1065, 2008). Dyslexics were generally slower than normal readers in searching a horizontal or vertical target among oblique distracters. However, the addition of a click sound presented in synchrony with a color change of the target drastically improved their performance up to the level of the normal readers. These results are in line with the idea that developmental dyslexics have specific problems in disengaging attention from the current fixation, and that the phasic alerting by a sound can compensate for this deficit

    Overexpression of the Endoplasmic Reticulum Chaperone BiP3 Regulates XA21-Mediated Innate Immunity in Rice

    Get PDF
    Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the innate immune response. Although PRR-mediated signaling events are critical to the survival of plants and animals, secretion and localization of PRRs have not yet been clearly elucidated. Here we report the in vivo interaction of the endoplasmic reticulum (ER) chaperone BiP3 with the rice XA21 PRR, which confers resistance to the Gram negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). We show that XA21 is glycosylated and is primarily localized to the ER and also to the plasma membrane (PM). In BiP3-overexpressing rice plants, XA21-mediated immunity is compromised, XA21 stability is significantly decreased, and XA21 proteolytic cleavage is inhibited. BiP3 overexpression does not affect the general rice defense response, cell death or brassinolide-induced responses. These results indicate that BiP3 regulates XA21 protein stability and processing and that this regulation is critical for resistance to Xoo

    High Density Lipoprotein (HDL) Promotes Glucose Uptake in Adipocytes and Glycogen Synthesis in Muscle Cells

    Get PDF
    Background: High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. Methods and Results: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1- [ 3 H]-2deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) a were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-a were diminished in SR-BI knock-down 3T3-L1 cells. Conclusions: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells throug

    Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia

    Get PDF
    To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles

    Teaching for understanding and/or teaching for the examination in high school physics

    No full text
    Literature on the related notions of 'teaching for understanding' and 'exemplary teaching' tends to be interpreted as prescribing certain classroom approaches. These are usually the strategies often identified with constructivist teaching, which involve a redefinition of the teacher's role: rather than being seen as a source of knowledge and control, the teacher is described as the facilitator of a largely student-directed search for understanding. More 'transmissive', teacher-centred approaches are held to lead to poor student understanding, low cognitive engagement and rote learning. This paper reports a case study of physics teaching in a government high school in Perth, Western Australia. This case study is part of a larger project spanning 5 years and eight case investigations in Perth schools. While the pedagogical style of the teacher studied could be labelled as 'transmissive', we tentatively assert that his practice exemplified high-quality physics teaching and led to high-quality understanding on the part of the students. The study suggests that prescriptions for quality teaching must be sensitive to issues of context and content, and that further study in a variety of school contexts is required to expand our understanding of what constitutes good teaching and learning in physics

    Biomarkers for detecting kidney dysfunction in type-2 diabetics (T2D) and diabetic nephropathy (DN) subjects: a case-control study to identify potential biomarkers of DN to stratify risk of progression in T2D patients

    No full text
    INTRODUCTION: Currently there are no biomarkers that are predictive of when patients with type-2 diabetes (T2D) will progress to more serious kidney disease i.e., diabetic nephropathy (DN). Biomarkers that could identify patients at risk of progression would allow earlier, more aggressive treatment intervention and management, reducing patient morbidity and mortality. MATERIALS AND METHODS: Study participants (N=88; control n=26; T2D n=32; DN n=30) were recruited from the renal unit at Antrim Area Hospital, Antrim, UK; Whiteabbey Hospital Diabetic Clinic, Newtownabbey, UK; Ulster University (UU), Belfast, UK; and the University of the Third Age (U3A), Belfast, UK; between 2019 and 2020. Venous blood and urine were collected with a detailed clinical history for each study participant. RESULTS: In total, 13/25 (52.0%) biomarkers measured in urine and 25/34 (73.5%) biomarkers measured in serum were identified as significantly different between control, T2D and DN participants. DN patients, were older, smoked more, had higher systolic blood pressure and higher serum creatinine levels and lower eGFR function. Serum biomarkers significantly inversely correlated with eGFR. CONCLUSION: This pilot-study identified several serum biomarkers that could be used to predict progression of T2D to more serious kidney disease: namely, midkine, sTNFR1 and 2, H-FABP and Cystatin C. Our results warrant confirmation in a longitudinal study using a larger patient cohort
    corecore