209 research outputs found

    Знеболювання в ендоскопічній хірургії органів грудної порожнини

    Get PDF
    Anesthesia in the endoscopic thoracic surgeryЗнеболювання в ендоскопічній хірургії органів грудної порожнин

    Linking working memory and long-term memory: A computational model of the learning of new words

    Get PDF
    The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity. Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change

    The mind's eye, looking inward? In search of executive control in internal attention shifting

    Full text link
    In studies of mental counting, participants are faster to increment a count that was just incremented (no-switch trial) than to increment a different count (switch trial). Investigators have attributed the effect to a shift in the internal focus of attention on switch trials. Here we report evidence for other bottom-up and top-down contributions. Two stimuli were mapped to each of two counts. The no-switch facilitation was greater when stimuli repeated than when they were different. Event-related potential (ERP) activity associated with repetitions was anterior to that associated with switching. Runs of no-switch trials elicited faster responses and frontal ERP activity. Runs of switches and large counts both elicited slow responses and reduced P300 amplitudes. Bottom-up processes may include priming on no-switch trials and conflict on switch trials. Top-down processes may control conflict, subvocal rehearsal, and the contents of working memory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73572/1/1469-8986.00059.pd

    The application of rules in morphology, syntax and number processing: a case of selective deficit of procedural or executive mechanisms?: Deficit of procedural or executive mechanisms

    Get PDF
    International audienceDeclarative memory is a long-term store for facts, concepts and words. Procedural memory subserves the learning and control of sensorimotor and cognitive skills, including the mental grammar. In this study, we report a single-case study of a mild aphasic patient who showed procedural deficits in the presence of preserved declarative memory abilities. We administered several experiments to explore rule application in morphology, syntax and number processing. Results partly support the differentiation between declarative and procedural memory. Moreover, the patient's performance varied according to the domain in which rules were to be applied, which underlines the need for more fine-grained distinctions in cognition between procedural rules

    Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity

    Get PDF
    BACKGROUND: Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4-8 Hz), alpha- (8-12 Hz), beta- (12-32 Hz), and gamma- (32-40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. CONCLUSIONS/SIGNIFICANCE: We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task

    Implicit Temporal Expectation Attenuates Auditory Attentional Blink

    Get PDF
    Attentional blink (AB) describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe) nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20%) that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB
    corecore