26 research outputs found

    Vortex flows impart chirality-specific lift forces

    Get PDF
    Recent reports that macroscopic vortex flows can discriminate between chiral molecules or their assemblies sparked considerable scientific interest both for their implications to separations technologies and for their relevance to the origins of biological homochirality. However, these earlier results are inconclusive due to questions arising from instrumental artifacts and/or insufficient experimental control. After a decade of controversy, the question remains unresolved-how do vortex flows interact with different stereoisomers? Here, we implement a model experimental system to show that chiral objects in a Taylor-Couette cell experience a chirality-specific lift force. This force is directed parallel to the shear plane in contrast to previous studies in which helices, bacteria and chiral cubes experience chirality-specific forces perpendicular to the shear plane. We present a quantitative hydrodynamic model that explains how chirality-specific motions arise in non-linear shear flows through the interplay between the shear-induced rotation of the particle and its orbital translation. The scaling laws derived here suggest that rotating flows can be used to achieve chiral separation at the micro-and nanoscales

    Transcriptional Hierarchy of Aeromonas hydrophila Polar-Flagellum Genes▿

    No full text
    Aeromonas hydrophila polar-flagellum class I gene transcription is σ70 dependent, which is consistent with the fact that the A. hydrophila polar flagellum is constitutively expressed. In contrast to other bacteria with dual flagellar systems such as Vibrio parahaemolyticus, the A. hydrophila LafK protein does not compensate for the lack of the polar-flagellum regulator FlrA (V. parahaemolyticus FlaK homologue). This is consistent with the fact that the A. hydrophila FlrA mutation abolishes polar-flagellum formation in liquid and on solid surfaces but does not affect inducible lateral-flagellum formation. The results highlight that the polar- and lateral-flagellum interconnections and control networks are specific and that there are differences between the dual flagellar systems in A. hydrophila and V. parahaemolyticus. Furthermore, our results indicate that the A. hydrophila polar-flagellum transcriptional hierarchy (also in class II, III, and IV genes) shares some similarities with but has many important differences from the transcriptional hierarchies of Vibrio cholerae and Pseudomonas aeruginosa. The A. hydrophila flhF and flhG genes are essential for the assembly of a functional polar flagellum because in-frame mutants fail to swim in liquid medium and lack the polar flagellum. In Vibrio and Pseudomonas flhG disruption increases the number of polar flagella per cell, and Pseudomonas flhF disruption gives an aberrant placement of flagellum. Here, we propose the gene transcriptional hierarchy for the A. hydrophila polar flagellum
    corecore