14 research outputs found

    New synthetic routes, topologies and physical properties of single-chain nanoparticles.

    Get PDF
    175 p.Esta tesis presenta un trabajo exhaustivo en torno a las nanopartículas poliméricas unimoleculares (SCNPs, por sus siglas en inglés). La combinación de técnicas de síntesis de polímeros de vanguardia y técnicas de caracterización avanzadas nos ha permitido:1. Establecer nuevas rutas sintéticas para obtener SCNPs.2. Sintetizar SCNPs con nuevas topologías.3. Estudiar con profundidad las propiedades físicas de las SCNPs.Los Capítulos 1 y 2 introducen este emergente campo y proporcionan una revisión de los conceptos fundamentales, los métodos de síntesis actuales, las aplicaciones potenciales y algunas de las técnicas de caracterización más utilizadas. Los tipos de instrumentos y las configuraciones utilizadas en el presente trabajo se recogen en el Capítulo 2.El Capítulo 3 presenta una novedosa fusión de la polimerización por apertura de anillo zwitteriónica y la reacción de acoplamiento tiol-ino fotoactivada, que supone una interesante nueva ruta de obtención de SCNPs. Las SCNPs se obtuvieron a partir del terpolímero poly(THF-GPgE-GPE) con distintas proporciones de monómeros, y presentaron un mayor grado de compactación en el polímero con más unidades entrecruzantes.Para comprender mejor los procesos de polimerización y de formación de nanopartículas se emplearon técnicas avanzadas de caracterización que incluyen la cromatografía por permeación de gel con triple detección, resonancia magnética nuclear de protón y carbono, espectroscopía infrarroja, microscopía electrónica y calorimetría diferencial de barrido.El trabajo detallado en el Capítulo 4 tiene como objetivo la síntesis de SCNPs con una topología nueva: las nanopartículas poliméricas unimoleculares cíclicas, formadas a partir de anillos poliméricos. Esta arquitectura es reminiscente de los ciclótidos: péptidos cíclicos estabilizados por puentes disulfuro intramoleculares.Las nanopartículas cíclicas son finalmente obtenidas mediante la combinación de reacciones de polimerización controlada, reacciones hetero Diels-Alder fotoactivadas y química ¿click¿ catalizada por cobre. Las nanopartículas resultantes son caracterizadas detalladamente mediante técnicas de cromatografía de exclusión por tamaño, resonancia magnética nuclear, espectroscopía de infrarrojo y espectroscopía UV-Visible.El Capítulo 5 incluye un estudio cuantitativo de la compactación que tiene lugar tras la formación de SCNPs reversibles.Mediante un argumento de tipo Flory, proponemos una expresión que permite una estimación a priori de la reducción de tamaño que se da tras compactar cadenas unimoleculares. Se incluye también una comparación de los resultados obtenidos con dicha expresión con una extensa recopilación de datos bibliográficos (72 SCNPs, 22 tipos de interacciones reversibles).Finalmente, el Capítulo 6 presenta un método para obtener SCNPs totalmente deuteradas partiendo de monómeros e iniciadores disponibles comercialmente.La ruta sintética incluye una sencilla polimerización de apertura de anillo en ¿bulk¿, una reacción de azidación para funcionalizar el polímero y una reacción de descomposición del grupo azida asistida mediante luz ultravioleta que promueve las reacciones de entrecruzamiento intramoleculares necesarias para la obtención de SCNPs.También se realiza un estudio exhaustivo de las propiedades estructurales y dinámicas de fundidos de estas nanopartículas, combinando técnicas de caracterización tales como dispersión de neutrones elástica y cuasielástica, espectroscopía dieléctrica, medidas de reología y calorimetrías.El estudio muestra, a nivel microscópico, una ralentización de las dinámicas colectivas asociada a heterogeneidades estructurales con una distancia característica de alrededor de 1 nm. A nivel macroscópico, se observa na desaparición prácticamente completa del ¿techo elástico¿, que contrasta con el fenómeno opuesto observado en la vulcanización, en el que se genera una estructura de tipo sólido permanente.CFM: Centro de Física de Materiale

    New synthetic routes, topologies and physical properties of single-chain nanoparticles.

    Get PDF
    175 p.Esta tesis presenta un trabajo exhaustivo en torno a las nanopartículas poliméricas unimoleculares (SCNPs, por sus siglas en inglés). La combinación de técnicas de síntesis de polímeros de vanguardia y técnicas de caracterización avanzadas nos ha permitido:1. Establecer nuevas rutas sintéticas para obtener SCNPs.2. Sintetizar SCNPs con nuevas topologías.3. Estudiar con profundidad las propiedades físicas de las SCNPs.Los Capítulos 1 y 2 introducen este emergente campo y proporcionan una revisión de los conceptos fundamentales, los métodos de síntesis actuales, las aplicaciones potenciales y algunas de las técnicas de caracterización más utilizadas. Los tipos de instrumentos y las configuraciones utilizadas en el presente trabajo se recogen en el Capítulo 2.El Capítulo 3 presenta una novedosa fusión de la polimerización por apertura de anillo zwitteriónica y la reacción de acoplamiento tiol-ino fotoactivada, que supone una interesante nueva ruta de obtención de SCNPs. Las SCNPs se obtuvieron a partir del terpolímero poly(THF-GPgE-GPE) con distintas proporciones de monómeros, y presentaron un mayor grado de compactación en el polímero con más unidades entrecruzantes.Para comprender mejor los procesos de polimerización y de formación de nanopartículas se emplearon técnicas avanzadas de caracterización que incluyen la cromatografía por permeación de gel con triple detección, resonancia magnética nuclear de protón y carbono, espectroscopía infrarroja, microscopía electrónica y calorimetría diferencial de barrido.El trabajo detallado en el Capítulo 4 tiene como objetivo la síntesis de SCNPs con una topología nueva: las nanopartículas poliméricas unimoleculares cíclicas, formadas a partir de anillos poliméricos. Esta arquitectura es reminiscente de los ciclótidos: péptidos cíclicos estabilizados por puentes disulfuro intramoleculares.Las nanopartículas cíclicas son finalmente obtenidas mediante la combinación de reacciones de polimerización controlada, reacciones hetero Diels-Alder fotoactivadas y química ¿click¿ catalizada por cobre. Las nanopartículas resultantes son caracterizadas detalladamente mediante técnicas de cromatografía de exclusión por tamaño, resonancia magnética nuclear, espectroscopía de infrarrojo y espectroscopía UV-Visible.El Capítulo 5 incluye un estudio cuantitativo de la compactación que tiene lugar tras la formación de SCNPs reversibles.Mediante un argumento de tipo Flory, proponemos una expresión que permite una estimación a priori de la reducción de tamaño que se da tras compactar cadenas unimoleculares. Se incluye también una comparación de los resultados obtenidos con dicha expresión con una extensa recopilación de datos bibliográficos (72 SCNPs, 22 tipos de interacciones reversibles).Finalmente, el Capítulo 6 presenta un método para obtener SCNPs totalmente deuteradas partiendo de monómeros e iniciadores disponibles comercialmente.La ruta sintética incluye una sencilla polimerización de apertura de anillo en ¿bulk¿, una reacción de azidación para funcionalizar el polímero y una reacción de descomposición del grupo azida asistida mediante luz ultravioleta que promueve las reacciones de entrecruzamiento intramoleculares necesarias para la obtención de SCNPs.También se realiza un estudio exhaustivo de las propiedades estructurales y dinámicas de fundidos de estas nanopartículas, combinando técnicas de caracterización tales como dispersión de neutrones elástica y cuasielástica, espectroscopía dieléctrica, medidas de reología y calorimetrías.El estudio muestra, a nivel microscópico, una ralentización de las dinámicas colectivas asociada a heterogeneidades estructurales con una distancia característica de alrededor de 1 nm. A nivel macroscópico, se observa na desaparición prácticamente completa del ¿techo elástico¿, que contrasta con el fenómeno opuesto observado en la vulcanización, en el que se genera una estructura de tipo sólido permanente.CFM: Centro de Física de Materiale

    Advances in Single-Chain Nanoparticles for Catalysis Applications

    Get PDF
    Enzymes are the most efficient catalysts known for working in an aqueous environment near room temperature. The folding of individual polymer chains to functional single-chain nanoparticles (SCNPs) offers many opportunities for the development of artificial enzyme-mimic catalysts showing both high catalytic activity and specificity. In this review, we highlight recent results obtained in the use of SCNPs as bioinspired, highly-efficient nanoreactors (3–30 nm) for the synthesis of a variety of nanomaterials (inorganic nanoparticles, quantum dots, carbon nanodots), polymers, and chemical compounds, as well as nanocontainers for CO2 capture and release.Financial support by the Spanish Ministry "Ministerio de Economia y Competitividad", MAT2015-63704-P (MINECO/FEDER, UE), the Basque Government, IT-654-13, and the Gipuzkoako Foru Aldundia, Programa Red Gipuzkoana de Ciencia, Tecnologia e Innovacion 2017, is acknowledged. Jon Rubio-Cervilla is grateful to the Materials Physics Center-MPC for his predoctoral grant. Edurne Gonzalez received funding from the "Fellows Gipuzkoa" fellowship of the Gipuzkoako Foru Aldundia

    New synthetic routes, topologies and physical properties of single-chain nanoparticles

    No full text
    [ES]: Esta tesis presenta un trabajo exhaustivo en torno a las nanopartículas poliméricas unimoleculares (SCNPs, por sus siglas en inglés). La combinación de técnicas de síntesis de polímeros de vanguardia y técnicas de caracterización avanzadas nos ha permitido:1. Establecer nuevas rutas sintéticas para obtener SCNPs.2. Sintetizar SCNPs con nuevas topologías.3. Estudiar con profundidad las propiedades físicas de las SCNPs.Los Capítulos 1 y 2 introducen este emergente campo y proporcionan una revisión de los conceptos fundamentales, los métodos de síntesis actuales, las aplicaciones potenciales y algunas de las técnicas de caracterización más utilizadas. Los tipos de instrumentos y las configuraciones utilizadas en el presente trabajo se recogen en el Capítulo 2.El Capítulo 3 presenta una novedosa fusión de la polimerización por apertura de anillo zwitteriónica y la reacción de acoplamiento tiol-ino fotoactivada, que supone una interesante nueva ruta de obtención de SCNPs. Las SCNPs se obtuvieron a partir del terpolímero poly(THF-GPgE-GPE) con distintas proporciones de monómeros, y presentaron un mayor grado de compactación en el polímero con más unidades entrecruzantes.Para comprender mejor los procesos de polimerización y de formación de nanopartículas se emplearon técnicas avanzadas de caracterización que incluyen la cromatografía por permeación de gel con triple detección, resonancia magnética nuclear de protón y carbono, espectroscopía infrarroja, microscopía electrónica y calorimetría diferencial de barrido.El trabajo detallado en el Capítulo 4 tiene como objetivo la síntesis de SCNPs con una topología nueva: las nanopartículas poliméricas unimoleculares cíclicas, formadas a partir de anillos poliméricos. Esta arquitectura es reminiscente de los ciclótidos: péptidos cíclicos estabilizados por puentes disulfuro intramoleculares.Las nanopartículas cíclicas son finalmente obtenidas mediante la combinación de reacciones de polimerización controlada, reacciones hetero Diels-Alder fotoactivadas y química ¿click¿ catalizada por cobre. Las nanopartículas resultantes son caracterizadas detalladamente mediante técnicas de cromatografía de exclusión por tamaño, resonancia magnética nuclear, espectroscopía de infrarrojo y espectroscopía UV-Visible.El Capítulo 5 incluye un estudio cuantitativo de la compactación que tiene lugar tras la formación de SCNPs reversibles.Mediante un argumento de tipo Flory, proponemos una expresión que permite una estimación a priori de la reducción de tamaño que se da tras compactar cadenas unimoleculares. Se incluye también una comparación de los resultados obtenidos con dicha expresión con una extensa recopilación de datos bibliográficos (72 SCNPs, 22 tipos de interacciones reversibles).Finalmente, el Capítulo 6 presenta un método para obtener SCNPs totalmente deuteradas partiendo de monómeros e iniciadores disponibles comercialmente.La ruta sintética incluye una sencilla polimerización de apertura de anillo en 'bulk', una reacción de azidación para funcionalizar el polímero y una reacción de descomposición del grupo azida asistida mediante luz ultravioleta que promueve las reacciones de entrecruzamiento intramoleculares necesarias para la obtención de SCNPs.También se realiza un estudio exhaustivo de las propiedades estructurales y dinámicas de fundidos de estas nanopartículas, combinando técnicas de caracterización tales como dispersión de neutrones elástica y cuasielástica, espectroscopía dieléctrica, medidas de reología y calorimetrías.El estudio muestra, a nivel microscópico, una ralentización de las dinámicas colectivas asociada a heterogeneidades estructurales con una distancia característica de alrededor de 1 nm. A nivel macroscópico, se observa na desaparición prácticamente completa del 'techo elástico', que contrasta con el fenómeno opuesto observado en la vulcanización, en el que se genera una estructura de tipo sólido permanente.Peer reviewe

    Advances in Single-Chain Nanoparticles for Catalysis Applications

    No full text
    Enzymes are the most efficient catalysts known for working in an aqueous environment near room temperature. The folding of individual polymer chains to functional single-chain nanoparticles (SCNPs) offers many opportunities for the development of artificial enzyme-mimic catalysts showing both high catalytic activity and specificity. In this review, we highlight recent results obtained in the use of SCNPs as bioinspired, highly-efficient nanoreactors (3–30 nm) for the synthesis of a variety of nanomaterials (inorganic nanoparticles, quantum dots, carbon nanodots), polymers, and chemical compounds, as well as nanocontainers for CO2 capture and release

    Advances in single-chain nanoparticles for catalysis applications

    No full text
    Enzymes are the most efficient catalysts known for working in an aqueous environment near room temperature. The folding of individual polymer chains to functional single-chain nanoparticles (SCNPs) offers many opportunities for the development of artificial enzyme-mimic catalysts showing both high catalytic activity and specificity. In this review, we highlight recent results obtained in the use of SCNPs as bioinspired, highly-efficient nanoreactors (3–30 nm) for the synthesis of a variety of nanomaterials (inorganic nanoparticles, quantum dots, carbon nanodots), polymers, and chemical compounds, as well as nanocontainers for CO capture and release.Financial support by the Spanish Ministry “Ministerio de Economia y Competitividad”, MAT2015-63704-P (MINECO/FEDER, UE), the Basque Government, IT-654-13, and the Gipuzkoako Foru Aldundia, Programa Red Gipuzkoana de Ciencia, Tecnología e Innovación 2017, is acknowledged. Jon Rubio-Cervilla is grateful to the Materials Physics Center-MPC for his predoctoral grant. Edurne González received funding from the “Fellows Gipuzkoa” fellowship of the Gipuzkoako Foru Aldundia.Peer Reviewe

    Merging of zwitterionic ROP and photoactivated thiol–yne coupling for the synthesis of polyether single-chain nanoparticles

    No full text
    Preparation of polyether single-chain nanoparticles (SCNPs) has remained as an elusive issue in spite of the significant interest in the synthesis of polyether derivatives with complex architectures (i.e., star-shaped, cyclic, multicyclic, and supramolecular structures). In this work, we report the facile access to polyether SCNPs by combining zwitterionic ring-opening polymerization (ZROP) and thiol–yne coupling (TYC) techniques. Linear copolymers of tetrahydrofuran (THF) and glycidyl propargyl ether (GPgE), P(GPgE-co-THF), and terpolymers of THF, GPgE, and glycidyl phenyl ether (GPE), P(THF-GPgE-GPE), having naked alkyne functional groups (10–21 mol %) were synthesized through ZROP at high content of THF in the feed. Only P(THF-GPgE-GPE) terpolymers were found to give polyether SCNPs upon photoactivated TYC reaction by working at appropriate dilution conditions (0.5 mg/mL) and using 3,6-dioxa-1,8-octane-dithiol as homobifunctional cross-linker. The different monomer sequence distribution in the copolymers when compared to that in the terpolymers was the responsible for this behavior, as revealed by in situ polymerization 13C nuclear magnetic resonance measurements. A significant reduction in intrinsic viscosity was observed upon SCNP formation. Analysis of hydrodynamic data from size exclusion chromatography with triple detection in terms of Mark–Houwink–Sakurada plots revealed that the degree of compaction increases upon increasing the alkyne content in the SCNP precursor. Polyether SCNPs were found to be noncrystalline rubbery materials at room temperature.We gratefully acknowledge support from MINECO (MAT2012-31088) and Basque Government (IT-654-13).Peer reviewe

    Synthesis of single‐ring nanoparticles mimicking natural cyclotides by a stepwise folding‐activation‐collapse process

    No full text
    Cyclotides are small cyclic polypeptides found in a variety of organisms, ranging from bacteria to plants. Their ring structure endows those polypeptides with specific properties, such as improved stability against enzymatic degradation. Optimal cyclotide activity is often observed only in the presence of intra-ring disulfide bonds. Synthesis of soft nano-objects mimicking the conformation of natural cyclotides remains challenging. Here, a new class of natural cyclotide mimics synthesized by a stepwise folding-activation-collapse process at high dilution starting from simple synthetic precursor polymers is established. The initial folding step is carried out by a photoactivated hetero Diels-Alder (HDA) ring-closing reaction, which is accompanied by chain compaction of the individual precursor polymer chains as determined by size exclusion chromatography (SEC). The subsequent activation step comprises a simple azidation procedure, whereas the final collapse step is driven by CuAAC in the presence of an external cross-linker, providing additional compaction to the final single-ring nanoparticles (SRNPs). The unique structure and compaction degree of the SRNPs is established via a detailed comparison with conventional single-chain nanoparticles (SCNPs) prepared exclusively by chain collapse from the exact same precursor polymer (without the prefolding step). The stepwise folding-activation-collapse approach opens new avenues for the preparation of artificial cyclotide mimetics.Financial support by the Spanish Ministry “Ministerio de Economia y Competitividad”, MAT2015-63704-P (MINECO/ FEDER, UE), the Basque Government, IT-654-13, and the Gipuzkoako Foru Aldundia, RED 101/17, is acknowledged. J.R.-C. thanks the Materials Physics Center – MPC for support (mobility and Ph.D. grants). C.B.-K. acknowledges the Australian Research Council (ARC) in the context of a Laureate Fellowship, enabling his photochemical research program. H.F. acknowledges generous funding from the German National Academy of Science, Leopoldina.Peer reviewe

    Melts of single-chain nanoparticles: A neutron scattering investigation

    Get PDF
    The impact of purely intramolecular cross-linking on the properties of a polymer melt is studied by neutron diffraction and quasielastic incoherent and coherent neutron scattering on a system composed exclusively of single-chain nanoparticles. As a reference, a parallel study is presented on the melt of the linear precursor chains’ counterpart. Associated with structural heterogeneities provoked by the internal compartmentalization due to cross-links, a dramatic slowing down of the relaxation of density fluctuations is observed at intermediate length scales.We acknowledge the financial support of the Basque Government (Code No. IT-1175-19) and the Ministerio de Economía y Competitividad [Code No. PGC2018-094548-B-I00 (MCIU/AEI/FEDER, UE)]. This work was based on experiments performed at the FOCUS instrument operated by the Swiss spallation neutron source SINQ (Paul Scherrer Institute, Villigen, Switzerland) and SPHERES [Heinz–Maier–Leibnitz Zentrum (MLZ), Garching, Germany] and was supported by the European Commission under the 7th Framework Programme through the “Research Infrastructures” action of the “Capacities” Programme, NMI3-II (Grant No. 283883).Peer reviewe

    Recent advances and opportunities in SCNPs

    No full text
    Resumen del trabajo presentado al Workshop on Functional Polymers, celebrado en San Sebastián (España) del 19 al 21 de marzo de 2018.Peer reviewe
    corecore