9,057 research outputs found

    A TDDFT study of the excited states of DNA bases and their assemblies

    Get PDF
    We present a detailed study of the optical absorption spectra of DNA bases and base pairs, carried out by means of time dependent density functional theory. The spectra for the isolated bases are compared to available theoretical and experimental data and used to assess the accuracy of the method and the quality of the exchange-correlation functional: Our approach turns out to be a reliable tool to describe the response of the nucleobases. Furthermore, we analyze in detail the impact of hydrogen bonding and π\pi-stacking in the calculated spectra for both Watson-Crick base pairs and Watson-Crick stacked assemblies. We show that the reduction of the UV absorption intensity (hypochromicity) for light polarized along the base-pair plane depends strongly on the type of interaction. For light polarized perpendicular to the basal plane, the hypochromicity effect is reduced, but another characteristic is found, namely a blue shift of the optical spectrum of the base-assembly compared to that of the isolated bases. The use of optical tools as fingerprints for the characterization of the structure (and type of interaction) is extensively discussed.Comment: 31 pages, 8 figure

    Evershed clouds as precursors of moving magnetic features around sunspots

    Full text link
    The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu

    Enhancements to the GW space-time method

    Get PDF
    We describe the following new features which significantly enhance the power of the recently developed real-space imaginary-time GW scheme (Rieger et al., Comp. Phys. Commun. 117, 211 (1999)) for the calculation of self-energies and related quantities of solids: (i) to fit the smoothly decaying time/energy tails of the dynamically screened Coulomb interaction and other quantities to model functions, treating only the remaining time/energy region close to zero numerically and performing the Fourier transformation from time to energy and vice versa by a combination of analytic integration of the tails and Gauss-Legendre quadrature of the remaining part and (ii) to accelerate the convergence of the band sum in the calculation of the Green's function by replacing higher unoccupied eigenstates by free electron states (plane waves). These improvements make the calculation of larger systems (surfaces, clusters, defects etc.) accessible.Comment: 10 pages, 6 figure

    Photo-excitation of a light-harvesting supra-molecular triad: a Time-Dependent DFT study

    Full text link
    We present the first time-dependent density-functional theory (TDDFT) calculation on a light harvesting triad carotenoid-diaryl-porphyrin-C60. Besides the numerical challenge that the ab initio study of the electronic structure of such a large system presents, we show that TDDFT is able to provide an accurate description of the excited state properties of the system. In particular we calculate the photo-absorption spectrum of the supra-molecular assembly, and we provide an interpretation of the photo-excitation mechanism in terms of the properties of the component moieties. The spectrum is in good agreement with experimental data, and provides useful insight on the photo-induced charge transfer mechanism which characterizes the system.Comment: Accepted for publication on JPC, March 09th 200

    Star Products on Coadjoint Orbits

    Get PDF
    We study properties of a family of algebraic star products defined on coadjoint orbits of semisimple Lie groups. We connect this description with the point of view of differentiable deformations and geometric quantization.Comment: Talk given at the XXIII ICGTMP, Dubna (Russia) August 200

    Optical excitations in hexagonal nanonetwork materials

    Full text link
    Optical excitations in hexagonal nanonetwork materials, for example, Boron-Nitride (BN) sheets and nanotubes, are investigated theoretically. The bonding of BN systems is positively polarized at the B site, and is negatively polarized at the N site. There is a permanent electric dipole moment along the BN bond, whose direction is from the B site to the N site. When the exciton hopping integral is restricted to the nearest neighbors, the flat band of the exciton appears at the lowest energy. The higher optical excitations have excitation bands similar to the electronic bands of graphene planes and carbon nanotubes. The symmetry of the flat exciton band is optically forbidden, indicating that the excitons related to this band will show quite long lifetime which will cause strong luminescence properties.Comment: 4 pages; 3 figures; proceedings of "XVIth International Winterschool on Electronic Properties of Novel Materials (IWEPNM2002)
    • …
    corecore