5,134 research outputs found
Binding branched and linear DNA structures: from isolated clusters to fully bonded gels
The proper design of DNA sequences allows for the formation of well defined
supramolecular units with controlled interactions via a consecution of
self-assembling processes. Here, we benefit from the controlled DNA
self-assembly to experimentally realize particles with well defined valence,
namely tetravalent nanostars (A) and bivalent chains (B). We specifically focus
on the case in which A particles can only bind to B particles, via
appropriately designed sticky-end sequences. Hence AA and BB bonds are not
allowed. Such a binary mixture system reproduces with DNA-based particles the
physics of poly-functional condensation, with an exquisite control over the
bonding process, tuned by the ratio, r, between B and A units and by the
temperature, T. We report dynamic light scattering experiments in a window of
Ts ranging from 10{\deg}C to 55{\deg}C and an interval of r around the
percolation transition to quantify the decay of the density correlation for the
different cases. At low T, when all possible bonds are formed, the system
behaves as a fully bonded network, as a percolating gel and as a cluster fluid
depending on the selected r.Comment: 15 pages, 11 figure
Random Time Forward Starting Options
We introduce a natural generalization of the forward-starting options, first
discussed by M. Rubinstein. The main feature of the contract presented here is
that the strike-determination time is not fixed ex-ante, but allowed to be
random, usually related to the occurrence of some event, either of financial
nature or not. We will call these options {\bf Random Time Forward Starting
(RTFS)}. We show that, under an appropriate "martingale preserving" hypothesis,
we can exhibit arbitrage free prices, which can be explicitly computed in many
classical market models, at least under independence between the random time
and the assets' prices. Practical implementations of the pricing methodologies
are also provided. Finally a credit value adjustment formula for these OTC
options is computed for the unilateral counterparty credit risk.Comment: 19 pages, 1 figur
Recommended from our members
Performance of Electronic Ballast and Controls with 34 and 40 watt F40 Fluorescent Lamps
Microscopic theory for the glass transition in a system without static correlations
We study the orientational dynamics of infinitely thin hard rods of length L,
with the centers-of-mass fixed on a simple cubic lattice with lattice constant
a.We approximate the influence of the surrounding rods onto dynamics of a pair
of rods by introducing an effective rotational diffusion constant D(l),l=L/a.
We get D(l) ~ [1-v(l)], where v(l) is given through an integral of a
time-dependent torque-torque correlator of an isolated pair of rods. A glass
transition occurs at l_c, if v(l_c)=1. We present a variational and a
numerically exact evaluation of v(l).Close to l_c the diffusion constant
decreases as D(l) ~ (l_c-l)^\gamma, with \gamma=1. Our approach predicts a
glass transition in the absence of any static correlations, in contrast to
present form of mode coupling theory.Comment: 6 pages, 3 figure
A correspondence of modular forms and applications to values of L-series
An interpretation of the Rogers–Zudilin approach to the Boyd conjectures is established. This is based on a correspondence of modular forms which is of independent interest. We use the reinterpretation for two applications to values of L-series and values of their derivatives
Time Reversal to Localise Multiple Partial Discharges in Power Cables
The paper studies the suitability of the electromagnetic time reversal (EMTR) technique to localise multiple sources of partial discharges (PD) in power cables. In particular, the localisation of two PDs in a homogeneous power line is investigated both in the presence or absence of noise. The investigation, which is based on numerical simulations, shows that an EMTR-based PD localisation method is able to localise two PDs occurring simultaneously in a line using only a measurement at one observation point (OP), indiscriminately collecting the direct and reflected signals coming from the two PD sources. The EMTR procedure to localise multiple PD sources, using a Transmission Line Matrix model digital twin for the time reversal simulations, is described and the challenges that must be addressed to develop an EMTR-based device for the on-line location of multiple PDs
are discussed
Scale invariant correlations and the distribution of prime numbers
Negative correlations in the distribution of prime numbers are found to
display a scale invariance. This occurs in conjunction with a nonstationary
behavior. We compare the prime number series to a type of fractional Brownian
motion which incorporates both the scale invariance and the nonstationary
behavior. Interesting discrepancies remain. The scale invariance also appears
to imply the Riemann hypothesis and we study the use of the former as a test of
the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.
Dynamic multilateral markets
We study dynamic multilateral markets, in which players' payoffs result from intra-coalitional bargaining. The latter is modeled as the ultimatum game with exogenous (time-invariant) recognition probabilities and unanimity acceptance rule. Players in agreeing coalitions leave the market and are replaced by their replicas, which keeps the pool of market participants constant over time. In this infinite game, we establish payoff uniqueness of stationary equilibria and the emergence of endogenous cooperation structures when traders experience some degree of (heterogeneous) bargaining frictions. When we focus on market games with different player types, we derive, under mild conditions, an explicit formula for each type's equilibrium payoff as the market frictions vanish
- …