911 research outputs found

    Nuclear receptors and their coregulators in kidney

    Get PDF
    Nuclear receptors and their coregulators in kidney. Nuclear receptors are transcription factors that are essential in embryonic development, maintenance of differentiated cellular phenotypes, metabolism, and apoptosis. Dysfunction of nuclear receptor signaling leads to a wide spectra of proliferative, reproductive, and metabolic diseases, including cancers, infertility, obesity, and diabetes. In addition, many proteins have been identified as coregulators which can be recruited by DNA-binding nuclear receptors to affect transcriptional regulation. The cellular level of coregulators is crucial for nuclear receptor-mediated transcription and many coregulators have been shown to be targets for diverse intracellular signaling pathways and posttranslational modifications. This review provides a general overview of the roles and mechanism of action of nuclear receptors and their coregulators. Since progression of renal diseases is almost always associated with inflammatory processes and/or involve metabolic disorders of lipid and glucose, cell proliferation, hypertrophy, apoptosis, and hypertension, the importance of nuclear receptors and their coregulators in these contexts will be addressed

    Incorporating Neighboring Stimuli Data for Enhanced SSVEP-Based BCIs

    Get PDF

    Inflammatory stress exacerbates ectopic lipid deposition in C57BL/6J mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic systemic inflammation and abnormal free fatty acid metabolism are closely related to ectopic lipid deposition. In this study, we investigate if inflammation tissue-specifically disrupts lipogenesis and lipolysis in nonadipose tissues and adipose tissue, resulting in ectopic lipid deposition in C57BL/6J mice.</p> <p>Methods</p> <p>We used casein injection in C57BL/6J mice to induce a chronic systemic inflammatory stress in vivo. Serum was analyzed for free fatty acid and cytokines. Insulin sensitivities were evaluated by glucose and insulin tolerance tests. Liver, muscle, adipose tissues were taken for lipid analysis. Real-time polymerase chain reaction and western blotting were used to examine the gene and protein expression of molecules involved in adipogenesis and lipolysis in tissues.</p> <p>Results</p> <p>Casein injection elevated serum levels of IL-6 and SAA in mice, which are associated with increased lipid accumulation in liver and muscle, suggesting that chronic systemic inflammation induces ectopic lipid deposition in nonadipose tissues. The inflammatory stress upregulated mRNA and protein expression of sterol regulatory element binding protein 1, fatty acid synthase, and acetyl CoA carboxylase alpha, while inhibited these molecules expression in adipose. Interestingly, in the same experimental setting, inflammation increased triglyceride lipase and hormone-sensitive lipase expression in white adipose tissue. Inflammation also induced insulin resistance and increased serum free fatty acid levels in C57BL/6J mice.</p> <p>Conclusions</p> <p>Chronic systemic inflammation increased lipogenesis in nonadipose tissues and lipolysis in white adipose tissue, resulting in ectopic lipid deposition in nonadipose tissues. This disturbed free fatty acid homeostasis and caused insulin resistance in C57BL/6J mice.</p

    Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties

    Get PDF
    ased on the proportional-integral-derivative (PID) control structure widely used in engineering applications, a robust indirect-type iterative learning control (ILC) method is proposed for industrial batch processes subject to time-varying uncertainties. An important merit is that the proposed ILC design is independent of the PID tuning that aims primarily to hold robust stability of the closed-loop system, owing to the fact that the ILC updating law is implemented through adjusting the setpoint of the closed-loop PID control structure plus a feedforward control to the plant input from batch to batch. According to the robust H infinity control objective, a robust discrete-time PID tuning algorithm is given in terms of the plant state-space model description to accommodate for time-varying process uncertainties. For the batchwise direction, a robust ILC updating law is developed based on the two-dimensional (2D) control system theory. Only measured output errors of current and previous cycles are used to implement the proposed ILC scheme for the convenience of practical application. An illustrative example from the literature is adopted to demonstrate the effectiveness and merits of the proposed ILC method

    Evidence of a resonant structure in the e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} cross section between 4.05 and 4.60 GeV

    Get PDF
    The cross section of the process e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} for center-of-mass energies from 4.05 to 4.60~GeV is measured precisely using data samples collected with the BESIII detector operating at the BEPCII storage ring. Two enhancements are clearly visible in the cross section around 4.23 and 4.40~GeV. Using several models to describe the dressed cross section yields stable parameters for the first enhancement, which has a mass of 4228.6 \pm 4.1 \pm 6.3 \un{MeV}/c^2 and a width of 77.0 \pm 6.8 \pm 6.3 \un{MeV}, where the first uncertainties are statistical and the second ones are systematic. Our resonant mass is consistent with previous observations of the Y(4220)Y(4220) state and the theoretical prediction of a DDˉ1(2420)D\bar{D}_1(2420) molecule. This result is the first observation of Y(4220)Y(4220) associated with an open-charm final state. Fits with three resonance functions with additional Y(4260)Y(4260), Y(4320)Y(4320), Y(4360)Y(4360), ψ(4415)\psi(4415), or a new resonance, do not show significant contributions from either of these resonances. The second enhancement is not from a single known resonance. It could contain contributions from ψ(4415)\psi(4415) and other resonances, and a detailed amplitude analysis is required to better understand this enhancement

    The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity

    Get PDF
    China, with its growing population and economic development, faces increasing risks to health from climate change, but also opportunities to address these risks and protect health for generations to come. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate. In 2020, the Lancet Countdown Regional Centre in Asia, led by Tsinghua University, built on the work of the global Lancet Countdown and began its assessment of the health profile of climate change in China with the aim of triggering rapid and health-responsive actions. This 2021 report is the first annual update, presenting 25 indicators within five domains: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. The report represents the contributions of 88 experts from 25 leading institutions in, and outside of, China. From 2020 to 2021, five new indicators have been added and methods have been improved for many indicators. Where possible, the indicator results are presented at national and provincial levels to facilitate local understanding and policy making. In a year marked by COVID-19, this report also endeavours to reflect on China's pathway for a green recovery, ensuring it aligns with the carbon neutrality goal, for the health of the current and future generations

    Identification of Gene Modules Associated with Drought Response in Rice by Network-Based Analysis

    Get PDF
    Understanding the molecular mechanisms that underlie plant responses to drought stress is challenging due to the complex interplay of numerous different genes. Here, we used network-based gene clustering to uncover the relationships between drought-responsive genes from large microarray datasets. We identified 2,607 rice genes that showed significant changes in gene expression under drought stress; 1,392 genes were highly intercorrelated to form 15 gene modules. These drought-responsive gene modules are biologically plausible, with enrichments for genes in common functional categories, stress response changes, tissue-specific expression and transcription factor binding sites. We observed that a gene module (referred to as module 4) consisting of 134 genes was significantly associated with drought response in both drought-tolerant and drought-sensitive rice varieties. This module is enriched for genes involved in controlling the response of the plant to water and embryonic development, including a heat shock transcription factor as the key regulator in the expression of ABRE-containing genes. These results suggest that module 4 is highly conserved in the ABA-mediated drought response pathway in different rice varieties. Moreover, our study showed that many hub genes clustered in rice chromosomes had significant associations with QTLs for drought stress tolerance. The relationship between hub gene clusters and drought tolerance QTLs may provide a key to understand the genetic basis of drought tolerance in rice
    corecore